Articular cartilage lining joints, such as in the knee, functions to reduce friction and absorb shock. Collagen type II is the largest constituent in the extracellular matrix of articular cartilage and its restoration is of the highest interest to tissue engineers. Cartilage has little ability to naturally regenerate due to the absence of vascularity and the inability of the chondrocytes to proliferate at a high rate. It would be ideal to create a mimicking extracellular matrix/scaffold from type II collagen that could possibly be used to replace damaged articular cartilage that has the same function and morphology. Three different groups of cartilage chips were utilized to extract type II collagen. The yield of the three groups was compared. The extracted type II collagen from the three groups was electrospun at the concentrations of 0.06, 0.08, 0.10 and 0.12 g/mL. Both the pore size and fiber diameter were analyzed. A SDS-Page was performed on the material to assure it was pure type II collagen and that no collagen type I contamination was present.
Identifer | oai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-1927 |
Date | 01 January 2005 |
Creators | Knapp, Danielle Careen |
Publisher | VCU Scholars Compass |
Source Sets | Virginia Commonwealth University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | © The Author |
Page generated in 0.0021 seconds