Return to search

Imaging of the fish embryo model and applications to toxicology / Imagerie du modèle embryon de poisson : application à la toxicologie du développement

De nombreuses substances chimiques sont utilisées par l’industrie cosmétique pour entrer dans la composition de formules. En dehors de la nécessité d’évaluer leur efficacité, l’industrie cosmétique se doit surtout d’évaluer la sécurité de leurs substances pour l’humain. L'évaluation toxicologique des substances chimiques est réalisée dans le but de révéler un effet toxique potentiel de la substance testée. Parmi les effets potentiels que l’on souhaite détecter, la toxicité du développement (tératogénicité), c’est-à-dire la capacité d’une substance à provoquer l’apparition d’anomalies lors du développement embryonnaire, est fondamentale. En accord avec les législations internationales qui interdisent à l’industrie cosmétique d’avoir recours à des tests sur animaux de laboratoire pour l’évaluation de leurs substances, l’évaluation toxicologique de ces substances se base sur les résultats de tests in silico, in vitro et de tests faits sur des modèles alternatifs aux animaux de laboratoire. Pour le moment cependant, peu de méthodes alternatives existent et ont été validées pour la toxicologie du développement. Le développement de nouvelles méthodes alternatives est donc requis. D'autre part, en plus de l’évaluation de la sécurité des substances chez l’humain, l’évaluation de la toxicité pour l’environnement est nécessaire. L’usage de la plupart des produits cosmétiques et d’hygiène corporelle conduit, après lavage et rinçage, à un rejet à l’égout et donc dans les cours d’eau. Il en résulte que les environnements aquatiques (eaux de surface et milieux marins côtiers) sont parfois exposés aux substances chimiques incluses dans les formules cosmétiques. Ainsi, l’évaluation toxicologique environnementale des cosmétiques et de leurs ingrédients nécessite de connaître leur toxicité sur des organismes représentatifs de chaînes alimentaires aquatiques. Dans ce contexte, le modèle embryon de poisson présente un double avantage pour l’industrie cosmétique. Ce modèle, jugé par les législations internationales comme étant éthiquement acceptable pour les évaluations toxicologiques réalisées par l’industrie cosmétique, est représentatif des organismes aquatiques. Il est donc pertinent pour évaluer la toxicité environnementale des substances chimiques. D'autre part, ce modèle apparaît prometteur pour évaluer l’effet tératogène de substances chimiques chez l’humain. Pour ces raisons, un test d’analyse de la tératogénicité des substances chimiques est actuellement développé. Ce test se base sur l’analyse d’embryons de medaka (Oryzias Latipes) à 9 jours post fertilisation, après exposition des embryons par balnéation à des substances à concentrations déterminées. L’analyse de paramètres fonctionnels et morphologiques conduit au calcul d’un indice tératogène, qui permet de tirer une conclusion quant à l’effet tératogène de la substance testée. Cet indice est calculé à partir des mesures du taux de mortalité et du taux de malformations chez les embryons. L’objectif de ce projet est d’automatiser le test d’analyse de la tératogénicité, par classification automatique des embryons faite à partir d’image et de vidéo. La première méthode développée concerne la détection des battements cardiaques à partir de séquences vidéos, dans le but de calculer le taux de mortalité. Nous nous sommes ensuite concentrés sur deux types de malformations courantes qui sont les malformations axiales, et l'absence de vessie natatoire, en utilisant une méthode d'apprentissage automatique. Cette analyse doit être complétée par l'analyse d'autres malformations et conduire à un calcul du taux de malformations et de l’indice tératogène pour la substance testée / Numerous chemicals are used as ingredients by the cosmetics industry and are included in cosmetics formula. Aside from the assessment of their efficacy, the cosmetics industry especially needs to assess the safety of their chemicals for human. Toxicological screening of chemicals is performed with the aim of revealing the potential toxic effect of the tested chemical. Among the potential effects we want to detect, the developmental toxicity of the chemical (teratogenicity), meaning its capability of provoking abnormalities during the embryonic development, is crucial. With respect to the international regulations that forbid the use of animal testing for the safety assessment of cosmetics, the toxicological assessment of chemicals must base on an ensemble of in silico assays, in vitro assays and alternative models based assays. For now, a few alternative methods have been validated in the field of developmental toxicology. The development of new alternative methods is thus required. In addition to the safety assessment, the environmental toxicity assessment is also required. The use of most of cosmetics and personal care products leads to their rejection in waterways after washing and rince. This results in the exposition of some aquatic environments (surface waters and coastal marine environments) to chemicals included in cosmetics and personal care products. Thus, the environmental assessment of cosmetics and of their ingredients requires the knowledge of their toxicity on organisms that are representative of aquatic food chains. In this context, the fish embryo model, which is ethically acceptable according to international regulations, presents a dual advantage for the cosmetics industry. Firstly, as a model representative of aquatic organisms, it is accurate for the environmental assessment of chemicals. Secondly, this model is promising for the assessment of the teratogenic effect of chemicals on human. For this reason, a teratogenicity assessment test is developed. This test is based on the analysis of medaka fish embryos (Oryzias Latipes) at 9 days post fertilization, after balneation in a predetermined concentration of the chemical under study. The analysis of functional and morphological parameters allows to calculate a teratogenicity index, that depends on both rates of dead and malformed embryos. This index allows to to draw a conclusion concerning the teratogenic effect of the chemical.The objective of this project is to automate the teratogenicity test, by automated image and video classification. A first method is developed that aims to automatically detect embryo heart beats from acquired video sequences. This method will allow to calculate the proportion of dead embryos. We then focus on the detection of two common malformations: axial malformations and absence of a swim bladder, based on a machine learning classification. This analysis must be completed by the detection of other malformations so that we can measure the rate of malformed embryos and thus, calculate the teratogenicity index of the tested chemical

Identiferoai:union.ndltd.org:theses.fr/2019PESC2008
Date20 May 2019
CreatorsGenest, Diane
ContributorsParis Est, Talbot, Hugues, Cousty, Jean
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds