Return to search

M dwarf metallicities and exoplanets

This dissertation is primarily focused on the topic of M dwarf metallicities and their relevance to the study of extrasolar planets. I begin by describing a method for accurately determining M dwarf metallicities with spectral synthesis based on abundance analyses of visual binary stars. I then apply this technique and present the first spectroscopic metallicities of three M dwarfs with planetary mass companions. The three M dwarf planet hosts have sub-solar metallicities, a surprising departure from the trend observed in FGK-type planet hosting stars. I discuss the implications of this result for extrasolar planet searches around the most numerous stars in the galaxy. I also present measured metallicities for a select group of M dwarfs with precisely determined masses and luminosities. Comparison of these stars' V band magnitudes with the predictions of the current state-of-the-art theoretical models for low-mass stars indicate that the models are deficient, as previously thought. I discuss how the cool star model atmospheres that were developed for the metallicity analysis technique might be used to improve M dwarf structure and evolution models. In addition to M dwarf metallicities, I describe some complementary work to determine the true mass of an extrasolar planet candidate using a combined analysis of high-precision astrometry and radial velocities. I present a dynamical mass for the companion to HD 33636 that indicates it is a low-mass star instead of an exoplanet. This result demonstrates the value of follow-up astrometric observations to determine the true masses of exoplanet candidates detected with the radial velocity method. Finally, I discuss the broader implications of the results presented in this dissertation and the prospect for similar work in the future. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/3185
Date28 August 2008
CreatorsBean, Jacob Lyle, 1980-
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatelectronic
RightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.

Page generated in 0.0089 seconds