Return to search

Empacotamento e contagem em digrafos: cenários aleatórios e extremais / Packing and counting in digraphs: extremal and random settings

Nesta tese estudamos dois problemas em digrafos: um problema de empacotamento e um problema de contagem. Estudamos o problema de empacotamento máximo de arborescências no digrafo aleatório D(n,p), onde cada possvel arco é inserido aleatoriamente ao acaso com probabilidade p = p(n). Denote por (D(n,p)) o maior inteiro possvel 0 tal que, para todo 0 l , temos ^(l-1)_i=0 (l-i)|{v in d^in(v) = i}| Provamos que a quantidade máxima de arborescências em D(n,p) é (D(n,p)) assintoticamente quase certamente. Nós também mostramos estimativas justas para (D(n, p)) para todo p [0, 1]. As principais ferramentas que utilizamos são relacionadas a propriedades de expansão do D(n, p), o comportamento do grau de entrada do digrafo aleatório e um resultado clássico de Frank que serve como ligação entre subpartições em digrafos e a quantidade de arborescências. Para o problema de contagem, estudamos a densidade de subtorneios fortemente conexos com 5 vértices em torneios grandes. Determinamos a densidade assintótica máxima para 5 torneios bem como as famlias assintóticas extremais de cada torneios. Como subproduto deste trabalho caracterizamos torneios que são blow-ups recursivos de um circuito orientado com 3 vértices como torneios que probem torneios especficos de tamanho 5. Como principal ferramenta para esse problema utilizados a teoria de álgebra de flags e configurações combinatórias obtidas através do método semidefinido. / In this thesis we study two problems dealing with digraphs: a packing problem and a counting problem. We study the problem of packing the maximum number of arborescences in the random digraph D(n,p), where each possible arc is included uniformly at random with probability p = p(n). Let (D(n,p)) denote the largest integer 0 such that, for all 0 l , we have ^(l-1)_i=0 (l-i)|{v in d^in(v) = i}|. We show that the maximum number of arc-disjoint arborescences in D(n, p) is (D(n, p)) asymptotically almost surely. We also give tight estimates for (D(n, p)) for every p [0, 1]. The main tools that we used were expansion properties of random digraphs, the behavior of in-degree of random digraphs and a classic result by Frank relating subpartitions and number of arborescences. For the counting problem, we study the density of fixed strongly connected subtournaments on 5 vertices in large tournaments. We determine the maximum density asymptotically for five tournaments as well as unique extremal sequences for each tournament. As a byproduct of this study we also characterize tournaments that are recursive blow-ups of a 3-cycle as tournaments that avoid three specific tournaments of size 5. We use the theory of flag algebras as a main tool for this problem and combinatorial settings obtained from semidefinite method.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-24052017-183349
Date27 October 2016
CreatorsParente, Roberto Freitas
ContributorsSato, Cristiane Maria
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.002 seconds