This thesis is dedicated to the application of machine learning methods to algorithmic trading. We take inspiration from intraday traders and implement a system that predicts future price based on candlestick patterns and technical indicators. Using forex and US stocks tick data we create multiple aggregated bar representations. From these bars we construct original features based on candlestick pattern clustering by K-Means and long-term features derived from standard technical indicators. We then setup regression and classification tasks for Extreme Gradient Boosting models. From their predictions we extract buy and sell trading signals. We perform experiments with eight different configurations over multiple assets and trading strategies using walk-forward validation. The results report Sharpe ratios and mean profits of all the combinations. We discuss the results and recommend suitable configurations. In overall our strategies outperform randomly selected strategies. Furthermore, we provide and discuss multiple opportunities for further research.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:438032 |
Date | January 2021 |
Creators | Bureš, Michal |
Contributors | Pilát, Martin, Neruda, Roman |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds