Return to search

Evaluation of future design rainfall extremes and characteristics using multiple-model and multiple-scenario climate change models

Climate models are common tools for developing design standards in the hydrologic field; however,
these models contain uncertainties in multi-model and scenario selections. Along with these uncertainties,
biases can be attached to the models. Such biases and uncertainties can present difficulties in predicting
future extremes. These hydrologic extremes are believed to be non-stationary in character. Only in the
recent past have model users come to terms that the current hydrologic designs are no longer relevant due
to their assumption of stationarity. This study describes a systematic method of selecting a best fit model in
relationship to location and time, along with the use of that best fit model for evaluation of future extremes.
Rain gage stations throughout Florida are used to collect daily precipitation data used in extreme precipitation and quantitative indices. Through these indices conclusions are made on model selection and
future extremes, as they relate to hydrologic designs. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2013.

Identiferoai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_13060
ContributorsDezmain, Celyn (author), Teegavarapu, Ramesh (Thesis advisor), College of Engineering and Computer Science (Degree grantor), Department of Civil, Environmental and Geomatics Engineering
PublisherFlorida Atlantic University
Source SetsFlorida Atlantic University
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text
Format190 p., Online Resource
RightsAll rights reserved by the source institution, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0586 seconds