Return to search

Fabrication of Superconducting Tunnel Junction via Double Angle Evaporation

abstract: This thesis explores the possibility of fabricating superconducting tunnel junctions (STJ) using double angle evaporation using an E-beam system. The traditional method of making STJs use a shadow mask to deposit two films requires the breaking of the vacuum of the main chamber. This technique has given bad results and proven to be a tedious process. To improve on this technique, the E-beam system was modified by adding a load lock and transfer line to perform the multi-angle deposition and in situ oxidation in the load lock without breaking the vacuum of the main chamber. Bilayer photolithography process was used to prepare a pattern for double angle deposition for the STJ. The overlap length could be easily controlled by varying the deposition angles. The low-temperature resistivity measurement and scanning electron microscope (SEM) characterization showed that the deposited films were good. However, I-V measurement for tunnel junction did not give expected results for the quality of the fabricated STJs. The main objective of modifying the E-beam system for multiple angle deposition was achieved. It can be used for any application that requires angular deposition. The motivation for the project was to set up a system that can fabricate a device that can be used as a phonon spectrometer for phononic crystals. Future work will include improving the quality of the STJ and fabricating an STJs on both sides of a silicon substrate using a 4-angle deposition. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2019

Identiferoai:union.ndltd.org:asu.edu/item:54806
Date January 2019
ContributorsRana, Ashish (Author), Wang, Robert Y (Advisor), Newman, Nathan (Committee member), Wang, Liping (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeMasters Thesis
Format75 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0023 seconds