Focused Ion Beam (FIB) technology is a versatile tool that can be applied in many fields to great effect, including semiconductor device prototyping, Transmission Electron Microscopy (TEM) sample preparation, and nanoscale tomography. Developments in FIB technology, including the availability of alternative ion sources and improvements in automation capacity, make FIB an increasingly attractive option for many tasks. In this thesis, FIB systems are applied to photonic device fabrication and modification, semiconductor reverse engineering, and the production of structures for the study of nanoscale radiative heat transfer.
Optical facets on silicon nitride waveguides were produced with plasma FIB (PFIB) and showed an improvement of 3 ± 0.9 dB over reactive ion etched (RIE) facets. This process was then automated and is capable of producing a facet every 30 seconds with minimal oversight. PFIB was then employed to develop a method for achieving local backside circuit access for circuit editing, creating local trenches with flat bases of 200 x 200 μm. Gas assisted etching using xenon difluoride was then used in order to accelerate the etch process. Finally, several varieties of nanogap structure were fabricated on devices capable of sustaining temperature gradients, achieving a minimum gap size with PFIB of 60 nm. / Thesis / Master of Applied Science (MASc)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/25804 |
Date | January 2020 |
Creators | Wong, Connor |
Contributors | Knights, Andrew, Bassim, Nabil, Engineering Physics |
Source Sets | McMaster University |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0022 seconds