This dissertation presents the investigation of several additive manufactured components in RF and THz frequency, as well as the applications of gradient index lens based direction of arrival (DOA) estimation system and broadband electronically beam scanning system. Also, a polymer matrix composite method to achieve artificially controlled effective dielectric properties for 3D printing material is studied. Moreover, the characterization of carbon based nano-materials at microwave and THz frequency, photoconductive antenna array based Terahertz time-domain spectroscopy (THz-TDS) near field imaging system, and a compressive sensing based microwave imaging system is discussed in this dissertation. First, the design, fabrication and characterization of several 3D printed components in microwave and THz frequency are presented. These components include 3D printed broadband Luneburg lens, 3D printed patch antenna, 3D printed multilayer microstrip line structure with vertical transition, THz all-dielectric EMXT waveguide to planar microstrip transition structure and 3D printed dielectric reflectarrays. Second, the additive manufactured 3D Luneburg Lens is employed for DOA estimation application. Using the special property of a Luneburg lens that every point on the surface of the Lens is the focal point of a plane wave incident from the opposite side, 36 detectors are mounted around the surface of the lens to estimate the direction of arrival (DOA) of a microwave signal. The direction finding results using a correlation algorithm show that the averaged error is smaller than 1º for all 360 degree incident angles. Third, a novel broadband electronic scanning system based on Luneburg lens phased array structure is reported. The radiation elements of the phased array are mounted around the surface of a Luneburg lens. By controlling the phase and amplitude of only a few adjacent elements, electronic beam scanning with various radiation patterns can be easily achieved. Compared to conventional phased array systems, this Luneburg lens based phased array structure has a broadband working frequency and has no scan angle coverage limit. Because of the symmetry of Luneburg lens, no beam shape variation would occur for the entire scanning range. Moreover, this alternative phased array requires much less system complexity to achieve a highly directional beam. This reduction in system complexity allows the electronic scanning system to be built at much lower cost than traditional phased arrays. Fourth, the characterization of carbon based (Graphene and carbon nanotube) thin films on different substrates via Terahertz time-domain spectroscopy are presented in this dissertation. The substrate permittivity is first characterized. The film under test is then treated as a surface boundary condition between the substrate and air. Using the uniform field approximation, the electromagnetic properties of the film can be extracted. To improve accuracy, precise thickness of sample substrate is calculated through an iteration process in both dielectric constant extraction and surface conductivity extraction. Uncertainty analysis of the measured thin film properties is performed. Fifth, a coded transmitter TDS near field imaging system by employing photoconductive antenna (PCA) array is reported. Silicon lens array is used to couple and focus the femto-second laser onto each PCA. By varying the bias state of each PCA element, the ON/OFF state or power level for different PCAs can be controlled independently. The sample object is placed 10m away from the PCA array to measure the THz near field image. A Hadamard matrix is applied to code the 2x2 antenna array to improve the SNR. Measured results clearly indicate an improved SNR compared to individual antenna measurement. In addition, Multiphysics COMSOL and a FDTD algorithm combined with HFSS time domain simulation is used to model the physics of TDS photoconductive antenna and optimize the performance of TDS transmitter and receiver. Good agreement between simulation and experiment is obtained. Finally, a design of a Principal Component Analysis (PCA) based microwave compressive sensing system using reconfigurable array is presented. An iterative beam synthesis process is used to realize the required radiation patterns obtained from PCA. A human body scanning system is studied as an example to investigate the compressive sensing performance using PCA generated radiation patterns. Optical images are used as surrogates for the RF images in implementation of the training PCA dictionary. Compared to random patterns based compressive sensing system, this PCA based compressive sensing system requires fewer numbers of measurements to achieve the same performance.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/612821 |
Date | January 2016 |
Creators | Liang, Min |
Contributors | Xin, Hao, Dvorak, Steven, Cao, Siyang, Xin, Hao |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Electronic Dissertation |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0018 seconds