Return to search

Estimação de maxima verossimilhança para processo de nascimento puro espaço-temporal com dados parcialmente observados / Maximum likelihood estimation for space-time pu birth process with missing data

Orientador: Nancy Lopes Garcia / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-11T16:45:43Z (GMT). No. of bitstreams: 1
Goto_DanielaBentoFonsechi_M.pdf: 3513260 bytes, checksum: ff6f9e35005ad9015007d1f51ee722c1 (MD5)
Previous issue date: 2008 / Resumo: O objetivo desta dissertação é estudar estimação de máxima verossimilhança para processos de nascimento puro espacial para dois diferentes tipos de amostragem: a) quando há observação permanente em um intervalo [0, T]; b) quando o processo é observado após um tempo T fixo. No caso b) não se conhece o tempo de nascimento dos pontos, somente sua localização (dados faltantes). A função de verossimilhança pode ser escrita para o processo de nascimento puro não homogêneo em um conjunto compacto através do método da projeção descrito por Garcia and Kurtz (2008), como projeção da função de verossimilhança. A verossimilhança projetada pode ser interpretada como uma esperança e métodos de Monte Carlo podem ser utilizados para estimar os parâmetros. Resultados sobre convergência quase-certa e em distribuição são obtidos para a aproximação do estimador de máxima verossimilhança. Estudos de simulação mostram que as aproximações são adequadas. / Abstract: The goal of this work is to study the maximum likelihood estimation of a spatial pure birth process under two different sampling schemes: a) permanent observation in a fixed time interval [0, T]; b) observation of the process only after a fixed time T. Under scheme b) we don't know the birth times, we have a problem of missing variables. We can write the likelihood function for the nonhomogeneous pure birth process on a compact set through the method of projection described by Garcia and Kurtz (2008), as the projection of the likelihood function. The fact that the projected likelihood can be interpreted as an expectation suggests that Monte Carlo methods can be used to compute estimators. Results of convergence almost surely and in distribution are obtained for the aproximants to the maximum likelihood estimator. Simulation studies show that the approximants are appropriate. / Mestrado / Inferencia em Processos Estocasticos / Mestre em Estatística

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/306192
Date09 October 2008
CreatorsGoto, Daniela Bento Fonsechi
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Garcia, Nancy Lopes, 1964-, Garcia, Jesus Enrique, Scmidt, Alexandra Mello
Publisher[s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Estatística
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Format84f. : il., application/pdf
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds