Return to search

Geometrické sémantické genetické programování / Geometric Semantic Genetic Programming

This thesis examines a conversion of a solution produced by geometric semantic genetic programming (GSGP) to an instantion of cartesian genetic programming (CGP). GSGP has proven its quality to create complex mathematical models; however, the size of these models can get problematically large. CGP, on the other hand, is able to reduce the size of given models. This thesis combinated these methods to create a subtree CGP (SCGP). The SCGP uses an output of GSGP as an input and the evolution is performed using the CGP. Experiments performed on four pharmacokinetic tasks have shown that the SCGP is able to reduce the solution size in every case. Overfitting was detected in one out of four test problems.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:385932
Date January 2018
CreatorsKončal, Ondřej
ContributorsBidlo, Michal, Sekanina, Lukáš
PublisherVysoké učení technické v Brně. Fakulta informačních technologií
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0017 seconds