River-floodplain connectivity is defined as the water mediated transfer of materials and energy between a river or stream and its adjacent floodplain. It is generally accepted that restoring and/or enhancing river-floodplain connectivity can reduce the downstream flux of reactive solutes such as nitrogen (N) and phosphorus (P) and thus improve downstream water quality. However, there is little scientific literature to guide ecological engineering efforts which optimize river-floodplain connectivity for solute retention. Therefore, the aim of my dissertation research was to examine feedbacks between inundation hydrology and floodplain biogeochemistry, with an emphasis on analyzing variation experienced along the river continuum and the cumulative effects of river-floodplain connectivity at the basin scale. This was completed through four independent investigations. Field sites ranged from the Atchafalaya River Basin, the largest river-floodplain system in the continental US, to the floodplain of a recently restored headwater stream in Appalachia. We also developed a method to examine river-floodplain connectivity across large- river networks and applied that methodology to US stream network. Largely, our results highlight the role floodwater residence time distributions play in floodplain biogeochemistry. In headwater streams, residence times restrict redox dependent processes (e.g. denitrification) and downstream flushing of reactive solutes is the dominant process. However, in large-river floodplains, redox dependent processes can become solute limited because of prolonged residence times and hydrologic isolation. In these floodplains, the dominant process is often autochthonous solute accumulation. Further, results from our modeling study suggest large-river floodplains have a greater impact on downstream water quality than floodplains associated with smaller streams, even when considering cumulative effects across the entire river network. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/75169 |
Date | 04 September 2015 |
Creators | Jones, Charles Nathaniel |
Contributors | Biological Systems Engineering, Scott, Durelle T., Hester, Erich T., Sample, David J., Keim, Richard F., Hession, W. Cully |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0022 seconds