The industrial uses of cottonseed oil are limited by its fatty acid composition. Genetic modification of cotton lipid profiles using seed-specific promoters could allow cotton growers to produce valuable new oils in the seed without adverse effects on fiber quality and yield, therefore making this crop more commercially profitable. Transgenic cotton callus harboring a diverged fatty acid desaturase gene (FADX) from Momordica charantia was characterized for production of alpha-eleostearic acid (conjugated double bonds: 18:3 D9 cis, 11 trans, 13 trans), not normally found in cotton. Gas chromatography (GC) in conjunction with mass spectrometry (MS) confirmed production of alpha-eleostearic acid in the transgenic cotton tissues. A second series of transformation experiments introduced the cotton fatty acid thioesterase B (FATB) cDNA, fused to the seed-specific oleosin promoter into cotton to promote the over-expression of FATB, to generate cotton with increased palmitate in the cottonseed. PCR amplification, as well as fatty acid analysis by gas chromatography, confirmed introduction of the FATB cDNA in transgenic tissues. Collectively, these results demonstrate the feasibility of manipulating the fatty acid composition in cotton via transgenic approaches and form the basis for continued efforts to create novel oils in cottonseed.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc5575 |
Date | 08 1900 |
Creators | Rommel, Amy A. |
Contributors | Chapman, Kent D., Pirtle, Robert M., Dickstein, Rebecca |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | Text |
Rights | Use restricted to UNT Community (strictly enforced), Copyright, Rommel, Amy A., Copyright is held by the author, unless otherwise noted. All rights reserved. |
Page generated in 0.002 seconds