In any power system, fault means abnormal flow of current. Insulation breakdown is the cause of fault generation. Different factors can cause the breakdown: Wires drifting together in the wind, Lightning ionizing air, wires with contacts of animals and plants, Salt spray or pollution on insulators. The common type of faults on a three phase system are single line-to-ground (SLG), Line-to-line faults (LL), double line-to-ground (DLG) faults, and balanced three phase faults. And these faults can be symmetrical (balanced) or Unsymmetrical (imbalanced).In this Study, a technique to predict the zero crossing point has been discussed and simulated. Zero crossing point prediction for reliable transmission and distribution plays a significant role. Electrical power control switching works in zero crossing point when a fault occurs. The precision of measuring zero crossing point for syncing power system control and instrumentation requires a thoughtful approach to minimize noise and external signals from the corrupted waveforms A faulted current waveform with estimated faulted phase/s, the technique is capable of identifying the time of zero crossing point. Proper Simulation has been organized on MATLAB R2012a.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:ece_etds-1047 |
Date | 01 January 2014 |
Creators | Hossan, Md. Shakawat |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations--Electrical and Computer Engineering |
Page generated in 0.002 seconds