Les processus physiques et chimiques activés pendant le cycle sismique déterminent l'évolution des propriétés mécaniques des failles, à court terme (pendant un séisme) comme à long terme (la récupération des propretés élastiques des roches de faille après un seisme). L'étude des roches de faille naturelles est un moyen pour identifier les processus actives pendant les diverses phases des cycle séismique. En cette thèse, échantillons prévenants de deux failles séismiques sont étudiés: la Faille de San Andreas (California, USA), une faille séismique active, et la faille de Gole Larghe (Alpes Méridionales, Italie), une faille séismique exhumée. La Faille de San Andreas a été forée jusqu'à 2.7km de profondeur. Les échantillons montrent une superposition de: pression-dissolution - hydrofracturation - pression dissolution. La succession des évents est compatible avec la formation de sacs de fluides dans zones de basse perméabilité dans la faille, ou la pression de fluides augmente à cause de le progressif compactage de le gouge de faille, jusqu'à la nucléation de une rupture. La faille de Gole Larghe est une faille exhumée, qui a préservé des pseudotachylytes (roches fondues par le chaleur de friction pendant une frottement séismique) formées à 9 - 11 km de profondeur il y a 30 millions d'années. Deux argumentes sont traités: (i) l'évolution des microstructures des cataclasites associées à les pseudotachylytes, pour identifier les processus qui peuvent porter à la formation de instabilités frictionnelles pendant les premières phases de croissance de une faille. (ii) L'origine des fluides en failles séismiques et pendant la fusion pour friction. La formation de un système de failles à cataclasites permit la percolation de un fluide aqueux de profondeur. La composition isotopique des pseudotachylytes (calculé sans la component de hydratation) est proche à celle des pseudotachylytes reproduites en expériences du laboratoire (sans fluides). La principale source de fluides pendant la fusion pour friction est donc la déshydratation des minéraux hydraté des roches autour de la faille. / The time recurrence of earthquakes is the result of the feedback between the tectonic loading and the evolution of fault strength during the seicmic cycle. This thesis aims to identify the chemical and physical processes in fault rocks from the modern seismogenic San Andreas Fault (California, USA) and the ancient seismogenic Gole Larghe Fault (Southern Alps, Italy). The San Andreas Fault was drilled to 2.7 km depth, and samples were extracted from the depth of nucleation of repeating microearthquakes. A cyclic recurrence of pressure-solution creep – hydrofracture - pressure solution creep supports the idea that isolated compartments of high fluid pressure might cause the nucleation of small to moderate size earthquakes, associated with the dominant creeping activity in this fault segment. The Gole Larghe Fault Zone was active 30 Ma ago at 9 – 11 km depth. The occurrence of pseudotachylytes witnesses its seismic behavior. Two topics were investigated: (i) The fabric evolution of cataclastic rocks with increasing deformation, to identify the processes potentially leading to the onset of unstable slip at the early stages of fault growth. (ii) The origin of fluids involved in seismic faulting and frictional melting. The formation of a cataclastic fault network allows the ingression of external hydrous fluids, probably of deep origin. The similar isotopic composition of natural pseudotachylytes and pseudotachylytes produced in dry conditions suggests that the fluid source is the dehydration of OH-bearing minerals in the wall rocks induced by coseismic frictional heating.
Identifer | oai:union.ndltd.org:theses.fr/2012GRENU008 |
Date | 04 April 2012 |
Creators | Mittempergher, Silvia |
Contributors | Grenoble, 127 Universita di Padova, Grattier, Jean-Pierre, Di Toro, Giulio |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0085 seconds