Vehicle anti-roll bars are suspension components used for limiting body roll angle. They have a direct effect on the handling characteristics of the vehicle. Design changes of anti-roll bars are quite common at various steps of vehicle production, and a design analysis must be performed for each change. Finite Element Analysis (FEA) can be effectively used in design analysis of anti-roll bars. However, due to high number of repeated design analyses, the analysis time and cost problems associated with the use of general FEA package programs may create considerable disadvantages in using these package programs for performing anti-roll bar design analysis. In this study, an automated design program is developed for performing design analysis of vehicle anti-roll bars. The program is composed of two parts, the user interface and the FEA macro. The FEA macro includes the codes for performing deformation, stress, fatigue, and modal analysis of anti-roll bars in ANSYS 7.0. The user interface, which is composed in Visual Basic 6.0, includes the forms for data input and result output procedures. By the developed software, the FEA of the anti-roll bars is simplified to simple data entry via user interface. The flow of the analysis is controlled by the program and the finite element analysis is performed by ANSYS at the background. The developed software can perform design analysis for a wide range of anti-roll bars: The bar centerline can have any 3D shape, the cross section can be solid or hollow circular, the end connections can be of pin or spherical joint type, the bushings can be mounted at any position on the bar with a user defined bushing length. The effects of anti-roll bar design parameters on final anti-roll bar properties are also evaluated by performing sample analyses with the automated design program developed in this study.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/4/1126309/index.pdf |
Date | 01 January 2003 |
Creators | Caliskan, Kemal |
Contributors | Unlusoy, Samim |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0019 seconds