Return to search

Modeling spatial variation of data quality in databases

The spatial data community relies on the quality of its data. This research investigates new ways of storing and retrieving spatial data quality information in databases. Given the importance of features and sub-feature variation, three different data quality models of spatial variation in quality have been identified and defined: per-feature, feature-independent and feature-hybrid. Quality information is stored against each feature in the per-feature model. In the feature-independent model, quality information is independent of the feature. The feature-hybrid is derived from a combination of the other two models. In general, each model of spatial variation is different in its representational and querying capabilities. However, no model is entirely superior in storing and retrieving spatially varying quality. Hence, an integrated data model called as RDBMS for Spatial Variation in Quality (RSVQ) was developed by integrating per-feature, feature-independent and feature-hybrid data quality models. The RSVQ data model provides flexible representation of SDQ, which can be stored alongside individual features or parts of features in the database, or as an independent spatial data layer. / The thesis reports on how Oracle 10g spatial RDBMS was used to implement this model. An investigation into the different querying mechanisms resulted in the development of a new WITHQUALITY keyword as an extension to SQL. The WITHQUALITY keyword has been designed in such a way that it can perform automatic query optimization, which leads to faster retrieval of quality when compared to existing query mechanism. A user interface was built using Oracle Forms 10g which enables the user to perform single and multiple queries in addition to conversion between models (example, per-feature to feature-independent). The evaluation, which includes an industry case study, shows how these techniques can improve the spatial data community’s ability to represent and record data quality information.

Identiferoai:union.ndltd.org:ADTP/245293
Date January 2008
CreatorsMohamed Ghouse, S. M. Z. S.
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsTerms and Conditions: Copyright in works deposited in the University of Melbourne Eprints Repository (UMER) is retained by the copyright owner. The work may not be altered without permission from the copyright owner. Readers may only, download, print, and save electronic copies of whole works for their own personal non-commercial use. Any use that exceeds these limits requires permission from the copyright owner. Attribution is essential when quoting or paraphrasing from these works., Open Access

Page generated in 0.0016 seconds