With growing demands for reliability, availability, safety and cost efficiency in modern machinery, accurate fault diagnosis is becoming of paramount importance so that potential failures can be better managed. Although various methods have been applied to machinery condition monitoring and fault diagnosis, the diagnostic accuracy that can be attained is far from satisfactory. As most machinery faults lead to increases in vibration levels, vibration monitoring has become one of the most basic and widely used methods to detect machinery faults. However, current vibration monitoring methods largely depend on signal processing techniques. This study is based on the recognition that a multi-parameter data fusion approach to diagnostics can produce more accurate results. Fuzzy measures and fuzzy integral data fusion theory can represent the importance of each criterion and express certain interactions among them. This research developed a novel, systematic and effective fuzzy measure and fuzzy integral data fusion approach for machinery fault diagnosis, which comprises feature set selection schema, feature level data fusion schema and decision level data fusion schema for machinery fault diagnosis. Different feature selection and fault diagnostic models were derived from these schemas. Two fuzzy measures and two fuzzy integrals were employed: the 2-additive fuzzy measure, the fuzzy measure, the Choquet fuzzy integral and the Sugeno fuzzy integral respectively. The models were validated using rolling element bearing and electrical motor experiments. Different features extracted from vibration signals were used to validate the rolling element bearing feature set selection and fault diagnostic models, while features obtained from both vibration and current signals were employed to assess electrical motor fault diagnostic models. The results show that the proposed schemas and models perform very well in selecting feature set and can improve accuracy in diagnosing both the rolling element bearing and electrical motor faults.
Identifer | oai:union.ndltd.org:ADTP/265448 |
Date | January 2007 |
Creators | Liu, Xiaofeng |
Publisher | Queensland University of Technology |
Source Sets | Australiasian Digital Theses Program |
Detected Language | English |
Rights | Copyright Xiaofeng Liu |
Page generated in 0.0018 seconds