Developing process plans and part programs rapidly and correctly for CNC machine tools plays a vital role in manufacturing. This study is concerned with the development of a web-enabled virtual design and manufacturing application system for rotational parts. The object oriented methodology is used in the application development. Windows Distributed interNet Application (DNA) architecture which describes a framework of building software technologies in an integrated web and client-server model of computing, is employed in the system. The entire system was modeled with Unified Modeling Language (UML), which is an industry-standard visual modeling notation to express software development architectures. Feature-based design approach, being a practical way of linking the design with manufacturing, is implemented in the rotational part design.
Users have to be registered in order to use the system. With the supplied web site, users can easily register to system. After registration, the user obtains a password and a unique username. Upon the user authentication, the user session starts. A typical user session involves new or past project selection, material selection, part sketching, blank size definition and cutting parameters determination. After all the steps are completed, process plan and part-program, which are required to manufacture the part on Denford Mirac CNC Turning Machine are generated and displayed on the web site and then saved to the database. The application enables the users to see past projects and to generate new process plan and part programs for different cutting parameters. The process plan, part program and the 2D wire frame drawing of the corresponding part are demonstrated on the web site for the chosen projects.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/1059930/index.pdf |
Date | 01 December 2003 |
Creators | Ozsuer, Erhan |
Contributors | Omer, Anlagan |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0763 seconds