In this paper, an object recognition system has been developed that uses local image features. In the system, multiple classes of objects can be recognized in an image. This system is basically divided into two parts: object detection and object identification. Object detection is based on SIFT features, which are invariant to image illumination, scaling and rotation. SIFT features extracted from a test image are used to perform a reliable matching between a database of SIFT features from known object images. Method of DBSCAN clustering is used for multiple object detection. RANSAC method is used for decreasing the amount of false detection. Object identification is based on 'Bag-of-Words' model. The 'BoW' model is a method based on vector quantization of SIFT descriptors of image patches. In this model, K-means clustering and Support Vector Machine (SVM) classification method are applied.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hh-27132 |
Date | January 2014 |
Creators | Gao, Yang |
Publisher | Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds