La reconnaissance d'images est un domaine de recherche qui a été largement étudié par la communauté scientifique. Les travaux proposés dans ce cadre s'adressent principalement aux diverses applications des systèmes de vision par ordinateur et à la catégorisation des images issues de plusieurs sources. Dans cette thèse, on s'intéresse particulièrement aux systèmes de reconnaissance d'images par le contenu dans les bases hétérogènes. Les images dans ce type de bases appartiennent à différents concepts et représentent un contenu hétérogène. Pour ce faire, une large description permettant d'assurer une représentation fiable est souvent requise. Cependant, les caractéristiques extraites ne sont pas nécessairement toutes appropriées pour la discrimination des différentes classes d'images qui existent dans une base donnée d'images. D'où, la nécessité de sélection des caractéristiques pertinentes selon le contenu de chaque base. Dans ce travail, une méthode originale de sélection adaptative est proposée. Cette méthode permet de considérer uniquement les caractéristiques qui sont jugées comme les mieux adaptées au contenu de la base d'image utilisée. Par ailleurs, les caractéristiques sélectionnées ne disposent pas généralement des mêmes performances. En conséquence, l'utilisation d'un algorithme de classification, qui s'adapte aux pouvoirs discriminants des différentes caractéristiques sélectionnées par rapport au contenu de la base d'images utilisée, est vivement recommandée. Dans ce contexte, l'approche d'apprentissage par noyaux multiples est étudiée et une amélioration des méthodes de pondération des noyaux est présentée. Cette approche s'avère incapable de décrire les relations non-linéaires des différents types de description. Ainsi, nous proposons une nouvelle méthode de classification hiérarchique multi-modèles permettant d'assurer une combinaison plus flexible des caractéristiques multiples. D'après les expérimentations réalisées, cette nouvelle méthode de classification assure des taux de reconnaissance très intéressants. Enfin, les performances de la méthode proposée sont mises en évidence à travers une comparaison avec un ensemble d'approches cité dans la littérature récente du domaine. / Image recognition is widely studied by the scientific community. The proposed research in this field is addressed to various applications of computer vision systems and multiple source image categorization. This PhD dissertation deals particularly with content based image recognition systems in heterogeneous databases. Images in this kind of databases belong to different concepts and represent a heterogeneous content. In this case and to ensure a reliable representation, a broad description is often required. However, the extracted features are not necessarily always suitable for the considered image database. Hence, the need of selecting relevant features based on the content of each database. In this work, an adaptive selection method is proposed. It considers only the most adapted features according to the used image database content. Moreover, selected features do not have generally the same performance degrees. Consequently, a specific classification algorithm which considers the discrimination powers of the different selected features is strongly recommended. In this context, the multiple kernel learning approach is studied and an improved kernel weighting method is presented. It proved that this approach is unable to describe the nonlinear relationships of different description kinds. Thus, we propose a new hierarchical multi-model classification method able to ensure a more flexible combination of multiple features. Experimental results confirm the effectiveness and the robustness of this new classification approach. In addition, the proposed method is very competitive in comparison with a set of approaches cited in the recent literature.
Identifer | oai:union.ndltd.org:theses.fr/2010EVRY0022 |
Date | 29 June 2010 |
Creators | Kachouri, Rostom |
Contributors | Evry-Val d'Essonne, École nationale d'Ingénieurs de Sfax (Tunisie), Maaref, Hichem, Derbel, Nabil |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.002 seconds