Return to search

Automated Species Classification Methods for Passive Acoustic Monitoring of Beaked Whales

The Littoral Acoustic Demonstration Center has collected passive acoustic monitoring data in the northern Gulf of Mexico since 2001. Recordings were made in 2007 near the Deepwater Horizon oil spill that provide a baseline for an extensive study of regional marine mammal populations in response to the disaster. Animal density estimates can be derived from detections of echolocation signals in the acoustic data. Beaked whales are of particular interest as they remain one of the least understood groups of marine mammals, and relatively few abundance estimates exist. Efficient methods for classifying detected echolocation transients are essential for mining long-term passive acoustic data. In this study, three data clustering routines using k-means, self-organizing maps, and spectral clustering were tested with various features of detected echolocation transients. Several methods effectively isolated the echolocation signals of regional beaked whales at the species level. Feedforward neural network classifiers were also evaluated, and performed with high accuracy under various noise conditions. The waveform fractal dimension was tested as a feature for marine biosonar classification and improved the accuracy of the classifiers. [This research was made possible by a grant from The Gulf of Mexico Research Initiative. Data are publicly available through the Gulf of Mexico Research Initiative Information & Data Cooperative (GRIIDC) at https://data.gulfresearchinitiative.org.] [DOIs: 10.7266/N7W094CG, 10.7266/N7QF8R9K]

Identiferoai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-3551
Date20 December 2017
CreatorsLeBien, John
PublisherScholarWorks@UNO
Source SetsUniversity of New Orleans
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of New Orleans Theses and Dissertations
Rightshttp://creativecommons.org/licenses/by-nc/4.0/

Page generated in 0.0024 seconds