In this thesis the relationship between Gröbner bases and algebraic coding theory is investigated, and especially applications towards linear codes, with Reed-Müller codes as an illustrative example. We prove that each linear code can be described as a binomial ideal of a polynomial ring, and that a systematic encoding algorithm for such codes is given by the remainder of the information word computed with respect to the reduced Gröbner basis. Finally we show how to apply the representation of a code by its corresponding polynomial ring ideal to construct a class of codes containing the so called primitive Reed-Müller codes, with a few examples of this result.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-132429 |
Date | January 2016 |
Creators | Abrahamsson, Olle |
Publisher | Linköpings universitet, Matematik och tillämpad matematik, Linköpings universitet, Tekniska fakulteten |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds