Return to search

Sensorimotor Performance Asymmetries And Hand Preference

This dissertation presents three experiments to investigate the general distribution of hand preference across a reachable working space, as well as the effect of sensory information about the reaching hand, and if this distribution is affected by long term practice. In addition, the underlying mechanisms of hand preference behavior were investigated with the obtained kinematic data.
Experiment 1 explored the distribution of hand preferences across the workspace among non-athlete right-handed participants, as well as the role that visual feedback might play in this distribution. Experiment 2 tested the hypothesis, if occlusion of visual feedback influences hand preference, accordingly interlimb differences. The third final experiment examined the effect of long term practice on hand preference among right-handed elite fencers.
The first study showed that the choice of arms is related to the energetic cost and dynamic efficiency of the movements. The results of the second experiment displayed that the choice of hands changes under no visual feedback condition, demonstrating that the choice is active and not habitual, depending on sensorimotor performance asymmetries. The final experiment demonstrated that elite athletes have different patterns of limb selection than non- athletes. Athletes, specifically fencers, show improved coordination in their non-dominant arms, which apparently increases the selection of this arm for reaching. Overall, it was concluded that hand preference depends on sensorimotor performance asymmetries and influenced by the long term practice.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12613278/index.pdf
Date01 June 2011
CreatorsAkpinar, Selcuk
ContributorsKirazci, Sadettin
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypePh.D. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0023 seconds