As two of the most abundant natural polymers, chitin and lignin not only play critical roles in fungal and plant cell walls but are also important functional materials and promising feedstocks for a variety of chemicals. This study investigated the interactions of chitin and lignin thin films with several other molecules via a quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM).
Interactions between chitin and family 18 chitinases are vital for understanding bacterial invasion of fungi and human defense against fungal infection. Regenerated chitin (RChitin) thin films were prepared via chemical conversion and spin-coating. Changes in their mass and viscoelasticity were monitored by a QCM-D in real time during incubation with family 18 chitinases. The optimal temperature for the activity of chitinases on surfaces was lower than bulk solution studies in the literature. Family 18 chitinases showed greater activity on dissolved chitin oligosaccharides while family 19 chitinases showed greater activity on RChitin films, which was attributed to chitin-binding domains in family 19 chitinases.
Catechyl lignin (C-lignin) is a promising substrate for lignin valorization. Films of C-lignin were synthesized via adsorbed horseradish peroxidase-catalyzed dehydrogenative polymerization (DHP) of caffeyl alcohol (C-alcohol), and degraded through Fenton chemistry with all processes observed by a QCM-D and AFM. The synthetic rate and yield for C-DHP films was lower than DHP films made from coniferyl alcohol (G-alcohol) and p-coumaryl alcohol (H-alcohol). The C-DHP film underwent complete Fenton mediated degradation in contrast to the G-DHP and H-DHP films regardless of their thicknesses.
Conventional lignin suffers from recalcitrance to degradation. Copolymer lignin films were synthesized through surface-initiated copolymerization of C and G or C, G and H monolignols. As the concentration of C-alcohol increased, the percentage degradation of the synthesized DHP copolymer films increased. Almost all the CG-DHP or CGH-DHP films were degraded when the percentage of the C-alcohol in the polymerization feed was ≥ 75% and ≥ 60% for CG-DHP and CGH-DHP, respectively. / Doctor of Philosophy / Natural polymers are widely considered as an alternative to fossil fuels for the production of biofuels, biochemicals, and biomaterials. The features of their biodegradability, biocompatibility, and sustainability can significantly alleviate concerns about environmental pollution and energy security. The surfaces of natural polymers are critical to their properties and applications. This dissertation focuses on the study of interfacial behaviors occurring at two of the most abundant natural polymers, chitin and lignin, via surface analysis techniques, a quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM).
When an endosymbiont bacteria enter a fungal host, they secrete chitinases to soften and loosen the chitin layer in the fungal cell wall. Small chitin fragments will be released from digestion of the chitin layer of the fungal cell wall by chitinases in humans suffering from fungal infections. In order to fully understand the interactions between the fungal chitin layer and chitinases, a chitin thin film was fabricated to mimic the chitin layer, and the changes of the chitin film in mass, viscoelasticity, and morphology during treatment with family 18 chitinases were studied at various temperatures and pH using a QCM-D and AFM. Family 19 chitinases produced greater degradation of chitin thin films than family 18 chitinases, even though the family 18 chitinases had greater activity in solution. Greater surface activity for family 19 chitinases were attributed to chitin-binding domains in their chemical structure that are absent in family 18 chitinases.
Millions of tons of lignin are produced in the lignocellulosic biorefinery and are discarded every year due to their recalcitrance to degradation as a result of their heterogeneous and complex structure. A newly discovered lignin, catechyl lignin (C-lignin), has potential for enhancing degradation on account of its simple linear structure. In this dissertation, C-lignin thin films were synthesized on gold-coated QCM-D sensor surfaces via surface-initiated dehydrogenative polymerization of caffeyl alcohol (C-alcohol). Their enzymatic and chemical degradation was investigated. It was found that the C-lignin films underwent complete chelator-mediated Fenton degradation in contrast to conventional lignin films.
Although the C-lignin promises to be an ideal substrate for lignin valorization, its narrow distribution in nature severely limits its wide application. In view of this limitation, some people are trying to incorporate C units into conventional lignin through genetically engineered plants. This dissertation demonstrates the successful copolymerization of C-alcohol with conventional monolignols and the improved degradation of the synthesized C unit-containing copolymer lignin films relative to conventional lignin films. The results are expected to inform the design of lignocellulosic biomass for greater utilization.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/105263 |
Date | 12 October 2021 |
Creators | Yu, Guoqiang |
Contributors | Chemistry, Esker, Alan R., Madsen, Louis A., Schulz, Michael, Roman, Maren |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0017 seconds