Luminescence measurements have been applied to three different structures namely, sulphate, fluorides and YAG. In all cases the RE doping suppresses the intrinsic emission and results in intense luminescence characteristic of the RE dopant. Additionally, in double doped samples, or contaminated ones, the TL data show that each dopant defines a glow peak, which is displaced in temperature relative to the others. Examples of this were discussed for CaS04:Ce,Mn; YAG:Nd,Tb,Cr,Mn; BaF2:Ho,Ce and BaF2:Tm,Ce. The data are discussed in terms of an energy transfer model between different parts of extended defect complexes which encompass the RE ion and the lattice defects. Calcium sulphate doped with Dy define a TL peak near 200°C suitable for radiation measurements, but when co-doped with Ag the TL peak move to higher temperatures with minor effects on the peak sensitivity. In Ce,Mn double doped samples, the peak temperatures differ by -7°C between the Ce and Mn sites. The TL glow curves from alkaline earth fluorides are complex and contain several overlapping peaks. Curve fitting show that the peak maxima below room temperature are insensitive to the RE dopant. Additionally the host material has a modest effect on the peak positions. Above room temperature each dopant provides a TL curve specific to the added RE ion and do not show common peaks. Concentration has many effects on the resultant glow curve, and even at the lowest concentration used here (0.01%) there is evidence of cluster formation. Samples with high RE content show low values of the frequency factor consistent with the energy transfer model in that the emission from RE-RE cluster dominates over the emission from direct charge recombination within the defect complex. The effect of concentration and the TL mechanism operating below room temperature are also discussed. Luminescence signals from the near surface of YAG:Nd (via CL) were contrasted with those from the bulk material via RL. Results indicate that the outer few micron layers differ significantly in luminescence response from the bulk crystal. The differences were ascribed to result from solvents that enter the YAG lattice during the growth stage or subsequently from cleaning treatments via the dislocations caused by cutting and polishing. Additionally, the growth stage may include gases from the residual air in the growth furnace trapped into the YAG lattice. In each case there is a discontinuity in luminescence intensity and/or emission wavelengths at temperatures which mach the phase transitions of the contaminants. At the transition temperature there will be a sudden pressure change and this will induce surface expansion or bulk compression. The differences between the two cases were detected by the alternatives of CL and RL excitation, where the Nd or Er lines have moved in opposite directions. The detection of such low concentrations of solvents/trapped gases by luminescence is extremely difficult due to experimental limitations. Hence their role in luminescence generation is normally ignored.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:366054 |
Date | January 2001 |
Creators | Al-Maghrabi, Mufied Mahmoud |
Publisher | University of Sussex |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Page generated in 0.0022 seconds