Vibrio cholerae, the causative agent of the diarrheal disease cholera, must acquire iron to survive. Although iron is relatively abundant, it forms insoluble ferric complexes in the presence of oxygen. The more soluble ferrous iron is limited to anaerobic or reducing environments. To meet the nutritional needs of the cell, V. cholerae encodes many different ferric iron transport systems but only one characterized ferrous iron transporter, Feo. Feo is widely distributed in bacteria and archaea, but the mechanism for transport is not known. In this study, basic characterization of the V. cholerae feoABC operon was performed to gain further understanding about a critical iron transport system. Each gene in the operon, feoA, feoB, and feoC, was found to be required for ferrous iron uptake. FeoB, an inner membrane protein, is considered to be the ferrous permease but functions for FeoA and FeoC are not known. These studies show that neither FeoA nor FeoC is required for expression of feoB, suggesting that these proteins are required for Feo function. Analysis of the composition of the Feo transporter using a bacterial adenylate cyclase two-hybrid system indicated interactions between Feo proteins, specifically, between FeoC and the cytoplasmic portion of FeoB. This result indicates that feoC encodes a protein that interacts with FeoB and is necessary for ferrous iron transport. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2010-12-2565 |
Date | 02 August 2011 |
Creators | Helton, Emily Ann |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | thesis |
Format | application/pdf |
Page generated in 0.0018 seconds