Return to search

Prédiction et estimation de très faibles taux d'erreur pour des chaînes de communication codées.

Dans cette thèse, nous abordons le sujet d'optimisation des méthodes utlisées pour l'évaluation de performance des codes correcteurs d'erreurs. La durée d'une simula- tion Monte Carlo pour estimer le taux d'erreurs dans un système de communication augmente exponentiellement avec l'accroissement du Rapport Signal sur Bruit (RSB). Importance Sampling (IS) est une des techniques qui permettent à réduire le temps de ces simulations. Dans ce travail, on a étudié et mis en oeuvre une version avancée d'IS, appelé Adaptive Importance Sampling (AIS), pour l'évaluation efficace des codes cor- recteurs d'erreurs aux taux d'erreur très bas. D'abord, nous présentons les inspirations et motivations en analysant différentes approches actuellement mises en pratique. On s'intéresse plus particulièrement aux méthodes inspirées de la physique statistique. Ensuite, basé sur notre analyse qualita- tive, nous présentons une méthode optimisée, appelé la méthode de Fast Flat Histogram (FFH) qui est intrinsèquement très générique. La méthode emploie l'algorithme de Wang-Landau, l'algorithme de Metropolis-Hastings et les chaines de Markov. Elle fonctionne dans le cadre de l'AIS et nous donne un gain de simulation satisfaisant. Différents paramètres sont utilisés pour assurer une précision statistique suffisante. L'extension vers d'autres types de codes correcteurs d'erreurs est directe. Nous présentons les résultats pour les codes LDPC et turbocodes ayant dif- férentes tailles et différents rendements. Par conséquent, nous montrons que la méthode FFH est générique et valable pour une large gamme des rendements, tailles et structures. De plus, nous montrons que la méthode FFH est un outil puissant pour trouver des pseudocodewords dans la région de RSB élévé en appliquant l'algorithme de décodage Belief Propagation aux codes LDPC.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00819416
Date10 January 2010
CreatorsKakakhail, Shahkar
PublisherUniversité de Cergy Pontoise
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0025 seconds