For all kinds of paperboard packages, the bending stiffness of the paperboard is a crucial property. In multi-ply folding boxboard (FBB) grades, this is obtained by placing different stocks in the outer and centre plies of the board. In the outer plies, a stock with a high tensile stiffness is used, typically made from refined kraft pulp fibres. In the middle ply/plies a stock with more bulky properties is placed, typically comprising of a high proportion of CTMP (chemi-thermomechanical pulp). CTMP fibres are stiffer and more inflexible with poor bonding abilities resulting in low strength properties. To increase the bonding strength in the middle ply, broke, containing chemical pulp is added, and sometimes refined chemical kraft pulp as well. Both fibres and fines, i.e. smaller fibre fragments, in a pulp have a significant contribution to the properties of the product. Fines produced during refining of chemical pulp are especially beneficial for increasing the strength. To achieve pulp fraction with higher fines content the pulp can be fractionated with a micro-perforated screen basket; a fine fraction produced from a screen with very small holes will contain a large proportion of fines. By adding such a fine fraction to a middle ply stock, the bulk properties of the main pulp, for example a CTMP, can be conserved as less refining of this pulp is required to achieve the targeted strength properties. However, a drawback is that the fine fraction usually has a very low mass concentration after the screening process as a lot of water pass through the screen together with the fines and fibre fragments. The excess water must be removed to maintain the water balance of the papermaking process. Further, the larger volumes require extra pumping capacity. A resource-efficient production of a fine fraction must target a high fine fraction mass concentration and a high content of fines and short fibre fragments in order to be implemented industrially. The focus of the present work was on separation efficiency (i.e. the difference in fibre length distribution caused by screening) and process efficiency (i.e. the concentration of the fine fraction) for production of a fine fraction of chemical pulp by screening, and the utilisation of the fine fraction as strength agent. Pilot-scale fractionation trials with a pressure screen with different microperforated screen baskets were performed in order to evaluate how the separation efficiency and process efficiency were affected by parameters such as feed concentration, pulp type (hardwood or softwood kraft pulp), hole size of the screen, and refining treatment prior to screening. The trials were evaluated using fibre length distributions, flow rates and concentrations of viii the feed flow and the fractions. Here, two complementary quantitative measures, Proportion in fine fraction (for process efficiency) and Fine fraction enrichment (for separation efficiency), were developed. To evaluate the strength enhancing effect of the obtained fine fraction, a lab scale study was performed where the fine fraction of a highly refined pulp was compared with the highly refined pulp as strength agent for a CTMP. The results of this study were verified in a pilot paper machine trial. In a second pilot paper machine trial, sheets with different CTMP proportions in the middle ply were studied in order to find out if the bulk could be increased while maintaining strength, by using a fine fraction made from refined chemical pulp. Regarding process efficiency, it was found that the most important parameter to obtain a high fine fraction concentration was a high feed concentration. Further, a higher fine fraction concentration for a given screening process was also obtained when using hardwood pulp and refining the pulp prior to the screening process. A higher feed concentration also had a positive effect on the separation efficiency. Small holes and a smooth surface of the screen basket were also important to improve the separation efficiency. It was shown that, when used as a strength agent in a CTMP pulp, the fine fraction of highly refined kraft pulp was twice as efficient as the highly refined kraft pulp, when added at equal mass proportion. However, both in the lab and pilot trial the strength increase was accompanied by a decreased bulk. This was expected, and to avoid this the proportion of the bulky CTMP had to be increased. The pilot paper machine trial with an increased CTMP proportion in the middle ply and a fine fraction of refined kraft pulp as strength agent demonstrated that it was possible to produce sheets with an increased bulk and maintained z-strength. / Böjstyvheten är en viktig egenskap för alla sorters hårda förpackningar. I flerskiktskartong får man böjstyvhet genom att ha ytterskikt med hög dragstyvhet tillverkade av fibrer från kemisk massa och ett mittskikt med hög bulk från styva fibrer, ofta med en stor andel CTMP (kemitermomekanisk massa). CTMP-fibrer är styva men ger lägre styrka i arket. För att öka styrkan i mittskiktet tillsätter man utskott (kasserad kartong) som delvis innehåller kemisk massa, och ibland även ren högmald kemisk massa. Både fibrer och finmaterial (fines) har stor betydelse för slutproduktens egenskaper. Fines som skapas vid malning av kemisk massa är särskilt effektiva för att öka styrkan. Genom att fraktionera massa med en mikroperforerad sil kan man få en finfraktion med högt finesinnehåll. Mikroperforerade silar är effektiva för längdfraktionering av massa; fines anrikas i den fraktionen som passerar silen medan långa fibrer stannar i den andra fraktionen. Genom att använda en sådan finfraktion i mittskiktet kan man få tillräcklig styrka och samtidigt behålla mer av bulken från CTMP:n genom att man inte behöver mala den för att få styrka. En nackdel är att finfraktionen vanligtvis har väldigt låg masskoncentration eftersom mycket vatten passerar silen tillsammans med fines och fiberfragment. Detta extra vatten måste tas bort för att vattenbalansen i papperstillverkningsprocessen ska bibehållas. Dessutom kräver den större volymen ökad pumpkapacitet. För att kunna använda en finfraktion industriellt behövs en effektiv produktion med hög koncentration och högt finesinnehåll. Fokus i det här arbetet lades på separationseffektivitet (skillnaden i fiberlängdsfördelning som resultat av silningen) och processeffektivitet (koncentrationen i finfraktionen) för tillverkning av en finfraktion av kemisk massa genom silning samt dess utnyttjande som styrkehöjande tillsats i ett mittskikt av kartong. För att utvärdera hur separationseffektiviteten och processeffektiviteten påverkas av parametrar som koncentrationen i flödet in till silen, typ av kemisk massa (gjord av lövved eller barrved), hålstorlek i silen samt malningen av massan, gjordes fraktioneringsförsök i pilotskala med en trycksil med olika mikroperforerade silkorgar. Resultatet av fraktioneringen utvärderades med hjälp av fiberlängdsfördelningar, flöden och koncentrationer i flödet till silen och de två fraktionerna efter silen. För utvärderingen togs två olika utvärderingsmetoder fram: Proportion i finfraktionen (för processeffektivitet) och Finfraktionsanrikning (för x separationseffektivitet). För att utvärdera hur effektiv en finfraktion av kemisk massa var som styrkeadditiv i ett CTMP-ark gjordes labbförsök där tillsats av högmald kemisk massa jämfördes med tillsats av enbart en finfraktion av den högmalda kemiska massan. Resultaten verifierades med ett försök på en pilotpappersmaskin. I ett följande försök på pilotpappersmaskinen tillverkades ark med ökat CTMP-innehåll för att öka bulken, och med en tillsats av en finfraktion av kemisk massa som styrkeadditiv. När det gäller processeffektivitet var hög koncentration i flödet till silen den viktigaste parametern för att få hög koncentration på finfraktionen. Detta var också positivt för separationseffektiviteten, färre av de längre partiklarna hamnade i finfraktionen. Vidare blev finfraktionens koncentration högre för lövvedsmassa. En finfraktion som ska användas som styrkeadditiv ska vara tillverkad av mald massa, malning av massan var också fördelaktigt för finfraktionens koncentration. Små hål och en slät yta på silkorgen var också positivt för separationseffektiviteten. Som styrkeadditiv i CTMP var finfraktionen av högmald kemisk massa dubbelt så effektiv som den högmalda kemiska massan vid lika stor tillsats. Men i både labbförsök och pilotförsök minskade bulken när styrkan ökade. Det var väntat eftersom att ersätta en del av originalmassan som har hög bulk, med en finfraktion eller högmald massa, som båda har mycket lägre bulk, alltid minskar bulken på arket. För att undvika en bulkförlust måste massasammansättningen i arket ändras. Försöket på pilotpappersmaskinen med ökat CTMP innehåll och en finfraktion av mald kemisk massa som styrkeadditiv visade att det är möjligt att tillverka ett ark med högre bulk och bibehållen styrka.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:miun-40246 |
Date | January 2020 |
Creators | Björk, Elisabeth |
Publisher | Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Sundsvall : Mittuniversitetet |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Licentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Mid Sweden University licentiate thesis, 1652-8948 ; 175 |
Page generated in 0.0028 seconds