Fibromyalgia syndrome (FMS) is a largely heterogeneous chronic pain syndrome of unclear pathophysiology, which lacks objective diagnostics and specific treatment. An immune-related shift towards a pro-inflammatory profile is discussed at a systemic level. Small fiber pathology (SFP) and local participation of non-neuronal skin cells like keratinocytes in cutaneous nociception are potential peripheral contributors. Small RNAs, particularly microRNAs (miRs) and newly described tRNA fragments (tRFs) act as posttranscriptional key regulators of gene expression and may modulate systemic and peripheral cell pathways. On cellular level, the exact mechanisms of keratinocyte-intraepidermal nerve fiber (IENF) interaction in the skin are insufficiently understood.
Via small RNA sequencing and quantitative real-time PCR, we investigated miR and tRF signatures in whole blood cells and skin biopsy-derived keratinocytes of female FMS patients versus healthy controls. We applied gene target prediction analysis to uncover underlying cellular pathways affected by dysregulated small RNAs. Altered FMS small RNAs from blood were compared with their expression in disease controls, i.e. Parkinson`s patients and patients with major depression and chronic pain. Association of SFP with small RNAs was investigated via correlation with clinical parameter. To explore keratinocyte-nerve fiber interactions with high relevance for SFP and cutaneous nociception, we adapted a super-resolution array tomography (srAT) approach and expansion microscopy (ExM) for human skin samples. Further, we created a fully human 2D co-culture model of primary keratinocytes and induced pluripotent stem cell derived sensory neurons.
Blood miR deregulation indicated systemic modulation of immune processes exerted by CholinomiRs and by miRs targeting the FoxO signaling pathway. Short sized tRFs were associated with mRNA metabolism and splicing. This supports the hypothesis of an inflammatory/autoimmunity component in FMS. Expression of blood small RNAs in FMS were discriminative against disease controls, highlighting their potential as objective biomarker. Blood small RNAs were predominantly upregulated and correlations between miR and clinical parameter reflected rather pain in general than SFP.
In FMS keratinocytes, a downregulation of miRs and tRFs was evident. Pathways for adenosine monophosphate-activated protein kinase (AMPK), adherens junction, and focal adhesion were predicted to be affected by miRs, while tRFs may influence proliferation, migration, and cell growth. Similar to blood miRs, altered miRs in keratinocytes correlated mostly with widespread pain and pain severity parameter. TRFs were partially associated with more severe IENF loss. Small RNAs in FMS keratinocytes may modulate pathways that define how keratinocytes interact with each other and with IENF.
These interactions include nerve fiber ensheathment, a conserved epithelial mechanism, which we visualize in human epidermis and a fully human co-culture model. Additionally, we revealed plaques of connexin 43, a pore forming protein involved in intercellular communication, at keratinocyte- nerve fiber contact sites. Objective quantification of these morphological findings in FMS and other diseases with SFP may inherit diagnostic value similar to IENF density.
We provide evidence for distinct miR and tRF signatures in FMS with implications for systemic immune regulation and local cell-cell interaction pathways. In the periphery we explored novel keratinocyte-nerve fiber interactions relevant for SFP and cutaneous nociception. / Das Fibromyalgie Syndrom (FMS) umfasst ein sehr heterogenes chronisches Schmerzsyndrom mit ungeklärter Pathophysiologie, ohne objektive Diagnostik und gezielt wirkende Behandlungsmöglichkeiten. Auf systemischer Ebene wird eine entzündungsfördernde Verschiebung von Immunprozessen diskutiert. In der Peripherie stellen die Kleinfaserpathologie (SFP) und Beteiligungen nicht-neuronaler Hautzellen, beispielsweise Keratinozyten, an kutaner Nozizeption potenziell beitragende Faktoren dar. Kleine RNAs, vor allem microRNAs (miRs) und die kürzlich beschriebenen tRNA Fragmente (tRFs) agieren als posttranskriptionelle Schlüsselregulatoren der Genexpression und könnten daher systemische und periphere Zellprozesse modulieren. Die genauen zellulären Mechanismen bei der Interaktion von Keratinozyten mit intraepidermalen Nervenfasern (IENF) in der Haut sind nur unzureichend verstanden.
Mittels Sequenzierung von kleinen RNAs und quantitativer Real-Time PCR untersuchten wir miR und tRF Signaturen in Vollblutzellen und in durch Hautbiopsie gewonnene Keratinozyten von FMS Patientinnen im Vergleich zu gesunden weiblichen Kontrollen. Um zugrundeliegende Zellprozesswege aufzudecken, die von der Deregulierung kleiner RNAs betroffen sind, verwendeten wir Vorhersageprogramme für regulierte Gene. In FMS verändert vorliegende kleine RNAs im Blut verglichen wir mit ihrer Expression in Krankheitskontrollen, d.h. Parkinson Patientinnen und Patientinnen mit schwerer Depression und chronischem Schmerz. Die Beziehung zwischen SFP und kleinen RNAs wurde mittels der Korrelation mit klinischen Parametern untersucht. Zur Erforschung von Keratinozyten-Nervenfaser Interaktionen, mit großer Relevanz für SFP und kutane Nozizeption, adaptierten wir eine superauflösende Array-Tomographie (srAT) Methodik und Expansionsmikroskopie (ExM) für humane Hautproben. Außerdem entwickelten wir ein rein humanes 2D Ko-Kultur Zellmodell, bestehend aus primären Keratinozyten und sensiblen Neuronen, die aus induzierten pluripotenten Stammzellen generiert wurden.
MiR Deregulierungen in Blut wiesen auf systemische Modulierung von Immunprozessen hin, ausgeübt durch CholinomiRs und miRs, die auf den FoxO Signalweg einwirken. Die tRFs mit kurzer Fragmentlänge waren mit mRNA Metabolismus und Splicing verknüpft. Diese Ergebnisse unterbauen die Hypothese einer entzündungsfördernden/autoimmunen Komponente in FMS. Die Expression kleiner RNAs aus FMS Blut war unterschiedlich zu Krankheitskontrollen, was ihr Potenzial als objektive Biomarker hervorhebt. Kleine RNAs im Blut waren überwiegend erhöht exprimiert und Korrelation zwischen miRs und klinischen Parametern spiegelten eher Schmerzen im Allgemeinen wider als SFP.
In Keratinozyten von FMS Patientinnen war eine Herunterregulierung von miRs und tRFs ersichtlich. Der Signalweg der Adenosinmonophosphat aktivierten Proteinkinase (AMPK), sowie Adherens Junction und Fokale Adhäsion waren prognostiziere Prozesse unter Einfluss von miRs. Ähnlich wie bei den Blut miRs, korrelierten veränderte miRs in Keratinozyten vor allem mit der Verbreitung des Schmerzes über den Körper und der Schmerzintensität. TRFs waren teilweise mit einem höheren Verlust an IENF verknüpft. Kleine RNAs in Keratinozyten von FMS Patientinnen könnten jene Prozesse modulieren, die festlegen, wie Keratinozyten miteinander und mit IENF interagieren.
Diese Interaktionen beinhalten den konservierten Mechanismus der Nervenfaserumhüllung, den wir in humaner Epidermis und einem komplett humanen Ko-Kultur Modell auflösen konnten. Zusätzlich zeigten wir Anhäufungen von Connexin 43, einem an interzellulärer Kommunikation beteiligten porenformenden Protein, an Keratinozyten-Nervenfaser Kontaktstellen. Eine objektive Quantifizierung dieser morphologischen Befunde in FMS und weiteren Erkrankungen mit SFP könnte einen diagnostischen Wert vergleichbar mit dem der IENF Dichte innehaben.
Wir liefern Belege für klare miR und tRF Signaturen in FMS mit Bedeutung für systemische Immunregulation und lokale Zell-Zell Interaktionsprozesse. In der Peripherie erkundeten wir neueartige Keratinozyten-Nervenfaser Interaktionen relevant für SFP und kutane Nozizeption.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:29020 |
Date | January 2023 |
Creators | Erbacher, Christoph |
Source Sets | University of Würzburg |
Language | English |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://creativecommons.org/licenses/by/4.0/deed.de, info:eu-repo/semantics/openAccess |
Page generated in 0.0027 seconds