In the quest for reliable, repeatable and stable field electron emission that has commercial potential, whilst many attempts have been made, none yet has been truly distinguishable as being successful. Whilst I do not claim within this thesis to have uncovered the secret to success, fundamental issues have been addressed that concern the future directions towards achieving its full potential. An exhaustive comparison is made across the diverse range of materials that have, over the past 40-50 years, been postulated and indeed tested as field emitters. This has not previously been attempted. The materials are assessed according to the important metrics of turn on voltage, Eon, and maximum current density, Jmax, where low Eon and high Jmax are seen as desirable. The nano-carbons, carbon nanotubes (CNTs), in particular, perform well in both these metrics. No dependency was seen between the material work function and its performance as an emitter, which might have been suggested by the Fowler Nordheim equations. To address the issues underlying the definition of the local enhancement factor, β, a number of variations of surface geometry using CNTs were fabricated. The field emission of these emitters was measured using two different approaches. The first is a Scanning Electrode Field Emission Microscope, SAFEM, which maps the emission at individual locations across the surface of the emitter, and the parallel plate that is more commonly encountered in field emission measurements. Finally, an observed hysteretic behaviour in CNT field emission was explored. The field emitters were subjected to a number of tests. These included; in-situ residual gas analysis of the gas species in the emitter environment, a stability study in which the emitters were exposed to a continuing voltage loop for 50 cycles, differing applied voltage times to analyse the effects on the emitted current, and varying maximums of applied field in a search for hysteresis onset information. These studies revealed the candidate in causing the hysteresis is likely to be water vapour that adsorbs on the CNT surface. A six step model if the emission process was made that details how and when the hysteresis is caused.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:744419 |
Date | January 2017 |
Creators | Collins, Clare Melissa |
Contributors | Robertson, John ; Milne, William. I. ; Cole, Matthew. T. |
Publisher | University of Cambridge |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://www.repository.cam.ac.uk/handle/1810/270357 |
Page generated in 0.0012 seconds