The aim of this work is to derive mathematical descriptions of gravitation. Postulating gravitation as a force field, Newton's law of gravitation is heuristically derived by considering linear differential operators invariant under euclidean isometries and by finding the fundamental solution to Helmholtz equation in three dimensions. Thereafter, the theory of differential geometry is introduced, providing a framework for the subsequent review of gravitation as curvature. Lastly, in the light of Einstein's postulates and equivalence principle, Lovelock's proof of uniqueness of Einstein's field equations is presented.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-315361 |
Date | January 2022 |
Creators | Wilhelmson, Niki, Stoyanov, Johan |
Publisher | KTH, Fysik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2022:113 |
Page generated in 0.0022 seconds