Return to search

The Minimum Rank Problem Over Finite Fields

We have two main results. Our first main result is a sharp bound for the number of vertices in a minimal forbidden subgraph for the graphs having minimum rank at most 3 over the finite field of order 2. We also list all 62 such minimal forbidden subgraphs and show that many of these are minimal forbidden subgraphs for any field. Our second main result is a structural characterization of all graphs having minimum rank at most k for any k over any finite field. This characterization leads to a very strong connection to projective geometry and we apply projective geometry results to the minimum rank problem.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-1981
Date16 July 2007
CreatorsGrout, Jason Nicholas
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.0019 seconds