Return to search

Field Of View Effects On Reflexive Motor Response In Flight Simulation

Virtual Reality (VR) and Augmented Reality (AR) Head Mounted Display (HMD) or Head Worn Display (HWD) technology represents low-cost, wide Field of Regard (FOR), deployable systems when compared to traditional simulation facilities. However, given current technological limitations, HWD flight simulator implementations provide a limited effective Field of View (eFOV) far narrower than the normal human 200[degrees] horizontal and 135[degrees] vertical FOV. Developing a HWD with such a wide FOV is expensive but can increase the aviator's visual stimulus, perception, sense of presence and overall training effectiveness. This research and experimentation test this proposition by manipulating the eFOV of experienced pilots in a flight simulator while measuring their reflexive motor response and task performance. Reflexive motor responses are categorized as information, importance and effort behaviors. Performance metrics taken include runway alignment error (RAE) and vertical track error (VTE). Results indicated a significant and systematic change in visual scan pattern, head movement and flight control performance as the eFOV was sequentially decreased. As FOV decreased, the average visual scan pattern changed to focus less on out-the-window (OTW) and more on the instruments inside the cockpit. The head range of movement significantly increased below 80[degrees] horizontal x 54[degrees] vertical eFOV as well as significantly decreasing runway alignment and vertical track performance, which occurred below 120[degrees] horizontal x 81[degrees] vertical eFOV.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-4707
Date01 January 2008
CreatorsCovelli, Javier
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0022 seconds