Return to search

Syntéza a analýza obvodů s moderními aktivními prvky / Synthesis and Analysis of Circuits with Modern Active Elements

The dissertation thesis deals with the synthesis and design of active frequency filters using current (CC) and voltage (VC) conveyors, or current active elements CMI (Current Mirror and Inverter), MCMI (Multi-output CMI) and PCA (Programmable Current Amplifier). As introduction, these active elements are described as suitable for the design of the circuits working in the voltage-, current,- ,and mixed-mode, or in pure current-mode speaking about the current active elements. The new frequency filter structures presented in this thesis using the above mentioned active elements were designed by the generalized autonomous circuit method, transformation cells and signal flow-graph theory. The generalized autonomous circuit method is based on full admittance network to which generalized active elements are connected. The described admittance networks can be used for other active elements. The next method is based on the transformation cells that subsequently are used for the design of synthetic elements with higher-order imittance. Original conditions for the design of such blocks are given that lead to maximal simplicity of the final structure with minimal number of passive and active elements. For effective usage of another method utilizing signal flow-graphs, new reduced graphs of chosen active elements are given. Their usage leads to direct function blocks synthesis with required properties. The functionality and behavior of chosen circuit solutions have been verified by analyses in simulation programs. The active elements were simulated by the universal current conveyor (UCC) or universal voltage conveyors (UVC) that were designed at the FEEC, BUT in cooperation with AMI Semiconductor Design Centre Brno with the CMOS 0.35 m technology. These active elements have been also used for the realization of chosen filter structures. The experimental measurements were performed in the in the frequency range 10 KHz to 100 MHz.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:233476
Date January 2009
CreatorsKoton, Jaroslav
ContributorsVrba, Kamil
PublisherVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.002 seconds