Les GNSS sont désormais largement présents dans le domaine des transports. Actuellement, la communauté scientifique désire développer des applications nécessitant une grande précision, disponibilité et intégrité.Ces systèmes offrent un service de position continu. Les performances sont définies par les paramètres du système mais également par l’environnement de propagation dans lequel se propagent les signaux. Les caractéristiques de propagation dans l’atmosphère sont connues. En revanche, il est plus difficile de prévoir l’impact de l’environnement proche de l’antenne, composé d’obstacles urbains. L’axe poursuivit par le LEOST et le LAGIS consiste à appréhender l’environnement et à utiliser cette information en complément de l’information GNSS. Cette approche vise à réduire le nombre de capteurs et ainsi la complexité du système et son coût. Les travaux de recherche menés dans le cadre de cette thèse permettent principalement de proposer des modélisations d'erreur de pseudodistances et des modélisations de l'état de réception encore plus réalistes. Après une étape de caractérisation de l’erreur, plusieurs modèles d’erreur de pseudodistance sont proposés. Ces modèles sont le mélange fini de gaussiennes et le mélange de processus de Dirichlet. Les paramètres du modèle sont estimés conjointement au vecteur d’état contenant la position grâce à une solution de filtrage adaptée comme le filtre particulaire Rao-Blackwellisé. L’évolution du modèle de bruit permet de s'adapter à l’environnement et donc de fournir une localisation plus précise. Les différentes étapes des travaux réalisés dans cette thèse ont été testées et validées sur données de simulation et réelles. / Today, the GNSS are largely present in the transport field. Currently, the scientific community aims to develop transport applications with a high accuracy, availability and integrity. These systems offer a continuous positioning service. Performances are defined by the system parameters but also by signal environment propagation. The atmosphere propagation characteristics are well known. However, it is more difficult to anticipate and analyze the impact of the propagation environment close to the antenna which can be composed, for instance, of urban obstacles or vegetation.Since several years, the LEOST and the LAGIS research axes are driven by the understanding of the propagation environment and its use as supplementary information to help the GNSS receiver to be more pertinent. This approach aims to reduce the number of sensors in the localisation system, and consequently reduces its complexity and cost. The work performed in this thesis is devoted to provide more realistic pseudorange error models and reception channel model. After, a step of observation error characterization, several pseudorange error models have been proposed. These models are the finite gaussian mixture model and the Dirichlet process mixture. The model parameters are then estimated jointly with the state vector containing position by using adapted filtering solution like the Rao-Blackwellized particle filter. The noise model evolution allows adapting to an urban environment and consequently providing a position more accurate.Each step of this work has been tested and evaluated on simulation data and real data.
Identifer | oai:union.ndltd.org:theses.fr/2011ECLI0006 |
Date | 07 June 2011 |
Creators | Viandier, Nicolas |
Contributors | Ecole centrale de Lille, Duflos, Emmanuel, Marais, Juliette |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds