Bon nombre de problèmes d’ingénierie requièrent l’estimation de l’état de systèmes dynamiques. La modélisation de l’espace des états du système est faite à travers un vecteur d’état qui contient toutes informations utiles pour la description du système. Les problèmes d’estimation d’état sont aussi connus comme problèmes inverses non stationnaires. Ils sont d'un grand intérêt dans de nombreuses applications pratiques, afin de produire une estimation séquentielle des variables souhaitées, à partir de modèles stochastiques et de mesures expérimentales. Ceci dans le but d’optimiser statistiquement l’erreur. Ce travail a pour objectif d’appliquer des méthodes de Filtres à Particules à des thermiques et de combustion. Ces algorithmes sont appliqués successivement à un problème de conduction de chaleur, à un problème de solidification et finalement à un problème de propagation d’incendies. / Many areas of engineering require state estimation of dynamic systems. State relevant information to describe the desired system. The state estimation problems are also known as transient inverse problems. They are of great interest in many practical applications, in order to produce sequential estimates of the desired variables through stochastic models and experimental measurements, in such a way that the error is statistically minimized. In this work we solve state estimation problems with the Bayesian class of particle filters, in heat transfer and combustion. These algorithms havebeen applied to problems of one-dimensional transient heat conduction, solidification and fire propagation.
Identifer | oai:union.ndltd.org:theses.fr/2012INPT0166 |
Date | 29 November 2012 |
Creators | Betencurte da Silva, Wellington |
Contributors | Toulouse, INPT, Universidade federal do Rio de Janeiro, Fudym, Olivier, Rangel Barreto Orlande, Helcio |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | Portuguese |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0018 seconds