Emerging infectious diseases can exert strong selection on hosts to evolve resistance or tolerance to infection. However, it remains unknown whether the evolution of specific defense strategies against a novel pathogen influences host immune phenotypes more broadly, potentially affecting their ability to respond to other pathogens. In 1994 the bacterial pathogen, Mycoplasma gallisepticum (MG) jumped from poultry into house finches, causing severe conjunctivitis and reducing host survival. MG then spread across the continental United States, exerting strong selection on host populations and creating geographic variation in the degree of population co-evolutionary history with the pathogen. Prior work found that populations of house finches with longer histories of MG endemism have evolved tolerance and resistance to MG, and this evolution is associated with several immunological differences including reductions in pro-inflammatory immune responses. However, it remains unknown whether these immunological changes are limited to MG-specific defenses or whether broader immune responses differ between populations with distinct coevolutionary histories with MG. To examine possible effects of the evolution of host responses to MG, we used five immune assays to challenge house finches from four populations, ranging from no history of MG endemism to 20+ years of MG endemism. When challenged with phytohemagglutinin (PHA), populations differed significantly in the strength of wing web swelling, with populations with longer MG exposure (and thus the highest MG tolerance) on average exhibiting the weakest swelling response when mass differences were controlled for. However, detected population differences in wing web swelling were small, and population differences were absent for responses to four other immune assays that spanned components of the innate and adaptive immune system. Future work should examine whether the local inflammation that underlies swelling responses to PHA shares common immunological mechanisms with local inflammatory responses to MG, which may explain why populations with evolved tolerance to MG show slightly lower swelling responses in response to PHA. Overall, these results suggest that the evolution of MG tolerance may have minor downstream consequences for responses to certain antigens, with the potential to influence a host's ability to respond to novel pathogen challenges, but most components of the host immune system appear largely unaffected. / Master of Science / Emerging infectious diseases can have devasting effects on new host species. To reduce the cost of these pathogens, host species can evolve ways to eliminate infection (resistance) or reduce damage during infection (tolerance), which is often caused by the host's immune system itself. As populations evolve these disease strategies, it is likely that other aspects of the immune system will also be affected, potentially compromising the ability of hosts to respond to pathogens other than the ones they evolved defenses against. We examined what sort of trade-offs might arise as house finches evolved resistance and tolerance to a new deadly pathogen, Mycoplasma gallisepticum (MG). House finch populations in the mid-Atlantic were first exposed to the disease in 1994, and as the disease spread across the continental United States, different populations have been exposed for different periods of time. This created a gradient in whether certain populations have had long enough time with MG to evolve disease strategies. Populations that have been exposed to MG for longer appear to have evolved both resistance and tolerance, and tolerant populations show lower levels of inflammatory immune markers that can be associated with self-damage. Using house finches from four different populations (ranging from 25 years of exposure history to zero years of MG exposure history), we tested a variety of immune system components to examine what areas of the immune system might have been broadly affected by the evolution of resistance and tolerance. We hypothesized that birds from populations with evolved MG tolerance would also have a reduced inflammation response when stimulated with substances that mimic infection by something other than MG. Only one assay supported this hypothesis. Birds from populations that had been exposed to MG for a longer period of time (and thus had evolved MG tolerance) had a reduced swelling response following injection with a plant protein called phytohemagglutinin. However, there were no population differences observed with the other four assays, suggesting that evolving defenses against MG did not result in widespread immunological effects. This suggests that the evolution of host defenses against an emerging pathogen may not compromise that host's ability to respond effectively to other types of pathogens that they encounter in nature.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/99278 |
Date | 06 July 2020 |
Creators | Rowley, Allison Annette |
Contributors | Biological Sciences, Hawley, Dana M., Dalloul, Rami A., McGlothlin, Joel W. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0022 seconds