Return to search

Automatic fine tuning of cavity filters / Automatisk finjustering av kavitetsfilter

Cavity filters are a necessary component in base stations used for telecommunication. Without these filters it would not be possible for base stations to send and receive signals at the same time. Today these cavity filters require fine tuning by humans before they can be deployed. This thesis have designed and implemented a neural network that can tune cavity filters. Different types of design parameters have been evaluated, such as neural network architecture, data presentation and data preprocessing. While the results was not comparable to human fine tuning, it was shown that there was a relationship between error and number of weights in the neural network. The thesis also presents some rules of thumb for future designs of neural network used for filter tuning.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-129576
Date January 2016
CreatorsBoyer de la Giroday, Anna
PublisherLinköpings universitet, Artificiell intelligens och integrerad datorsystem
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0017 seconds