Return to search

Finite element analysis of the heat transfer in friction stir welding with experimental validation

Friction stir welding is a relatively new joining process. The heat transfer involved is crucial in determining the quality of the weld. Experimenrtal data, though important, does not provide enough information about the heat transfer process and experiments can be costly and time consuming. A numerical model, using the finite element method, was developed to stimulate the heat transfer in the workpiece in which the heat generation due to friction and plastic deformation was modelled as a surface heat flux boundary condition. This model was applied to Aluminium AL6082-T6 and Titanium Ti6A1-4V for different welding condiitions. Results were validated with experimental results. The model was shown to give better predictions of the maximum temperatures at locations in the workpiece than the overall temperature trend. A parametric study was also performed on the Aluminium model in order o predict temperature fields of the workpiece for welding conditions that were additional to those undertaken experimentally. It was found that rotational speed had a larger effect on the change in temperature than the feed rate. From the parametric study it was also clear that lower rotational speeds (300 to 660 rpm) had a greater effect on the change in temperature than the higher rotational speeds (840 to 1200 rpm). It was concluded that the model was well suited for the estimation of temperatures involved in the FSw of Aluminium Al6082-T6 but was not as accurate when applied to the FSW of Titanium.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nmmu/vital:10511
Date January 2012
CreatorsVosloo, Natalie
PublisherNelson Mandela Metropolitan University, Faculty of Science
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Masters, MSc
Formatviii, 105 leaves, pdf
RightsNelson Mandela Metropolitan University

Page generated in 0.0015 seconds