Return to search

Numerical Evaluation of Energy Release Rate at Material Interfaces for Fatigue Life Predictions

Composite materials are becoming popular in almost all industries. Carbon-fiber and glass-fiber composites are used in aircraft, sports equipment, boats, prosthetics, and wind turbine blades. In all these applications, the composites are subjected to different loads. Loads can take the form of impact or cyclic/fatigue loading, both of which decrease the strength of composites as micro-cracks grow through the composite. Composite laminates are made up of fiber plies (thin layers of fiber) and the fibers are surrounded by a resin like epoxy. It is common for laminates to fail because of delamination growth (plies peeling apart). Small delaminations do not fail a composite, but as delaminations grow, the composite weakens and eventually fails. Composites behave differently than metals do, and failure analysis is more complicated because of the various directions of fibers. Numerical methods (specifically Finite Element Analysis) exist for predicting when failure will occur, but improvements are needed to make these numerical methods more accurate and efficient. The method created, for this thesis, is computationally efficient because it doesn’t require the analyst or computer to adjust the simulation based on where the delamination is (or what kind of shape it is). Energy values are extracted directly from the delamination front and not averaged from nearby locations.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-8173
Date01 May 2018
CreatorsHendrickson, Robert L.
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu.

Page generated in 0.0017 seconds