Reinforcement corrosion is the most common deterioration problem observed in reinforced concrete (RC) structures located at coastal or cold regions. The corrosion process can impact the performance of these structures by inducing damage on the bonding action between concrete and steel, either by the splitting of the concrete cover due to the volumetric expansion of corrosion products or the lubricant effect at the steel/concrete interface as the corrosion by-products accumulate. The current research aims at investigating corrosion-induced deterioration of bond between steel and concrete through finite element (FE) analysis of the flexural behaviour of corroded RC components. By treating the concrete cover as a thick-wall cylinder subjected to internal pressure, the analytical evaluation of impaired bond capacity is studied first and verified against published bonding tests. Then, the formulation of a numerical model is performed using ABAQUS, wherein a link element to simulate the bond behaviour is formulated and implemented through the ABAQUS user-subroutine (UEL) feature according to the validated analytical model. By introducing corrosion-induced damages, i.e., smaller cross-sectional area of reinforcement, splitting of concrete and bond deterioration, in the FE analyses, the results of the numerical model show good agreement with experimental observations. Upon validation of the analytical and FE models, a parametric investigation is conducted, wherein the effects of concrete strength, dimension of reinforcing bars, properties of oxide products, different corrosion damage mechanisms and the corrosion location along the longitudinal reinforcement on the flexural behaviour of RC beams are studied. The results show that the analytical evaluation for bond degradation is impacted by the selection of the post-cracking material model and the thickness of cover that determine the ‘holding capacity’ after cracking initiation. Also, the density of rust by-products affects the results of the analytical model at high corrosion levels. From the FE model results, it was observed that each damage mechanism due to corrosion contribute to different levels of flexural degradation, although the flexural strength degradation is mainly due to the loss of bonding action. The parametric study also demonstrates that flexural members which have reinforcement corrosion initiated near the supports suffer greater deterioration in flexural capacity than those with damages at mid span. Finally, based on these observations, suggestions for the application of both analytical and numerical models are made.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/33465 |
Date | January 2016 |
Creators | Du, Qixin |
Contributors | Martín-Pérez, Beatriz |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0021 seconds