Return to search

Laser Fired Aluminum Emitter for High Efficiency Silicon Photovoltaics Using Hydrogenated Amorphous Silicon and Silicon Oxide Dielectric Passivation

This thesis proposes and demonstrates a hydrogenated amorphous silicon passivated,
inverted photovoltaic device on n-type silicon, utilizing a Laser Fired Emitter on a rear i-a-
Si:H/SiOx dielectric stack. This novel low-temperature-fabricated device architecture
constitutes the first demonstration of an LFE on a dielectric passivation stack. The
optimization of the device is explored through Sentaurus computational modeling,
predicting a potential efficiency of >20%. Proof of concept devices are fabricated using the
DC Saddle Field PECVD system for the deposition of hydrogenated amorphous silicon
passivation layers. Laser parameters are explored highlighting pulse energy density as a key
performance determining factor. Annealing of devices in nitrogen atmosphere shows
performance improvements albeit that the maximum annealing temperature is limited by the
thermal stability of the passivation. A proof of concept device efficiency of 11.1% is
realized forming the basis for further device optimization.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/25580
Date31 December 2010
CreatorsFischer, Anton H.
ContributorsKherani, Nazir P.
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0021 seconds