Return to search

Heterogeneous condensation of the Lennard-Jones vapour onto nanoscale particles

The heterogeneous condensation of a vapour onto a substrate is a key step in a wide range of chemical and physical process that occur in both nature and technology. For example, dust and pollutant aerosol particles, ranging in size from several microns down to just a few nanometers, serve as cloud condensation nuclei in the atmosphere, and nanoscale structured surfaces provide templates for the controlled nucleation and growth of variety of complex materials. While much is known about the general features of heterogeneous nucleation onto macroscopic surfaces, much less is understood about both the dynamics and thermodynamics of nucleation involving nanoscale heterogeneities. The goal of this thesis is to understand the general features of condensation of vapours onto different types of nanoscale heterogeneity that range in degree of solubility from being insoluble, to partially miscible through to completely miscible.

The heterogeneous condensation of the Lennard-Jones vapour onto an insoluble nanoscale seed particle is studied using a combination of molecular dynamics simulations and thermodynamic theory. The nucleation rate and free energy barrier are calculated from molecular dynamics using the mean first passage time method. These results show that the presence of a weakly interacting seed has no effect on the formation of small cluster embryos but accelerates the rate by lowering the free energy barrier of the larger clusters. A simple phenomenological model of film formation on a small seed is developed by extending the capillarity based liquid drop model. It captures the general features of heterogeneous nucleation, but a comparison with the simulation results show that the model significantly overestimates the height of the nucleation barrier while providing good estimates of the critical film size.

A non-volatile liquid drop model that accounts for solution non-ideality is developed to describe the thermodynamics of partially miscible and fully miscible droplets in a solvent vapour. The model shows ideal solution drops dissolve always spontaneously, but partially miscible drops exhibit a free energy surface with two minima, associated with a partially dissolved drop and a fully dissolved drop, separated by a free energy barrier. The solubility transition between the two drops is shown to follow a hysteresis loop as a function of system volume similar to that observed in deliquescence. A simple lattice gas model describing the absorption of mono-layers of vapour onto the particle is also developed.

Finally, molecular dynamics simulation of miscible and partially miscible binary Lennard-Jones mixtures are also used to study this system. For all cases studied, condensation onto the drop occurs spontaneously. Sub-monolayers of the solvent phase
form when the system volume is large. At smaller system volumes, complete film formation is observed and the dynamics of film growth are dominated by cluster-cluster coalescence. Some degree of mixing into the core of the particle is observed for the miscible mixtures for all volumes. However, mixing of the solvent into the particle core only occurs below an onset volume for the partially miscible case, suggesting the presence of a solubility transition similar to the one described by the thermodynamic model.

Identiferoai:union.ndltd.org:USASK/oai:ecommons.usask.ca:10388/ETD-2013-10-1256
Date2013 October 1900
ContributorsBowles, Richard K.
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext, thesis

Page generated in 0.0019 seconds