Return to search

Double dating detrital zircons in till from the Ross Embayment, Antarctica

Indiana University-Purdue University Indianapolis (IUPUI) / U/Pb and (U-Th)/He (ZHe) dating of detrital zircons from glacial till samples in the Ross Embayment, Antarctica records cooling after the Ross/Pan-African orogeny (450-625 Ma) followed by a mid-Jurassic to mid-Cretaceous heating event in the Beacon basin. Zircons were extracted from till samples from heads of major outlet glaciers in East Antarctica, one sample at the mouth of Scott Glacier, and from beneath three West Antarctic ice streams. The Ross/Pan-African U/Pb population is ubiquitous in these Antarctic tills and many Beacon Supergroup sandstones, thus 83 grains were analyzed for ZHe to subdivide this population. Two ZHe age populations are evident in East Antarctic tills, with 64% of grains 115-200 Ma and 35% between 200-650 Ma. The older population is interpreted to be associated with the Ross/Pan-African orogeny including cooling of the Granite Harbour Intrusives and/or exhumation of the older basement rocks to form the Kukri Peneplain. The lag time between zircon U/Pb, ZHe and 40Ar/39Ar ages from K-bearing minerals show cooling over 200 My. Grains in East Antarctic tills with a ZHe age of 115-200 Ma likely reflects regional heating following the breakup of Gondwana from the Ferrar dolerite intrusions, subsidence within the rift basin, and a higher geothermal gradient. Subsequent cooling and/or exhumation of the Transantarctic Mountains brought grains below the closure temperature over a span of 80 My. This population may also provide a Beacon Supergroup signature as most of the tills with this age are adjacent to nunataks mapped as Beacon Supergroup and contain an abundance of
vi
Beacon pebbles within the moraine. Nine zircons grains from three Beacon Supergroup sandstones collected from moraines across the Transantarctic Mountains yield ages from 125-180 Ma. West Antarctic tills contain a range of ZHe ages from 75-450 Ma reflecting the diverse provenance of basin fill from East Antarctica and Marie Byrd Land. ZHe and U/Pb ages <105 Ma appear to be distinctive of West Antarctic tills. The combination of U/Pb, ZHe and 40Ar/39Ar analyses demonstrates that these techniques can be used to better constrain the tectonic evolution and cooling of the inaccessible subglacial source terrains beneath the Antarctic Ice Sheet.

Identiferoai:union.ndltd.org:IUPUI/oai:scholarworks.iupui.edu:1805/4450
Date21 May 2014
CreatorsWelke, Bethany Marie
ContributorsLicht, Kathy J., Hemming, Sidney R., Martin, Pamela
Source SetsIndiana University-Purdue University Indianapolis
Languageen_US
Detected LanguageEnglish
TypeThesis

Page generated in 0.0061 seconds