Ce mémoire est consacré à l'étude expérimentale et théorique de la<br />dynamique de croissance lente d'une fissure sous contrainte, en<br />géométrie bidimensionnelle.<br /><br />Des expériences de chargement à force constante, dites de fluage,<br />sur des matériaux hétérogènes fibreux (feuilles de papier)<br />comportant un défaut macroscopique initial (mode 1 de rupture)<br />nous ont permis d'observer la croissance lente par sauts d'une<br />fissure. La dynamique moyenne de croissance du défaut depuis une<br />longueur initiale $L_i$ jusqu'à une longueur critique $L_C$, où<br />l'avancement devient rapide, suit une loi exponentielle déterminée<br />par 2 paramètres, le temps de vie de l'échantillon $\tau$ et une<br />longueur caractéristique de croissance $\zeta$. La mesure de<br />l'énergie de surface nécessaire pour ouvrir la fente permet de<br />distinguer la longueur critique de Griffith $L_G$ et la longueur<br />critique de rupture $L_C$ expérimentale. Une analyse statistique<br />montre que la distribution des sauts de longueur de fissure suit<br />une loi de puissance tronquée par une coupure exponentielle. Cette<br />distribution, caractéristique de l'approche d'un point critique,<br />dépend du facteur d'intensité des contraintes $K$.<br /><br />Nous modélisons la croissance lente d'une fissure dans une plaque<br />parfaitement élastique, selon un processus de rupture irréversible<br />activée par les fluctuations statistiques de contraintes à<br />l'équilibre thermodynamique. Cette approche théorique validée par<br />des simulations numériques sur un réseau élastique discret est en<br />bon accord avec les expériences. De plus, la prise en compte de<br />pièges élastiques dus à la nature discrète du modèle pemet de<br />décrire une dynamique de croissance par sauts et de prédire la<br />forme de la distribution des sauts observée expérimentalement.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00009085 |
Date | 29 September 2004 |
Creators | Santucci, Stéphane |
Publisher | Ecole normale supérieure de lyon - ENS LYON |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds