Impellers are important components in the field of aerospace, energy technology, and precision machine industries. Considering the high accuracy and structural integrity, impellers might be manufactured by cutting. Due to their complex geometries and high degrees of interference in machining, multi-axis machines are requested to produce impellers.
The object of this thesis is to improve 5-axis tool paths for surface quality of impellers by smoothing point cutting tool paths in terms of linear segments and B-Splines and by using flank milling technologies with linear segment and B-Splines tool paths. Experimental results show that the surface quality of impeller blades can be improved by point cutting with smoothed tool paths and by flank milling. Moreover, the required milling time can be reduced by 18 percent and 13percent based on smoothed linear tool paths and smoothed B-Splines tool paths, respectively.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0902104-124008 |
Date | 02 September 2004 |
Creators | Kuo, Hsin-Hung |
Contributors | Kuang-Yuh Huang, Der-Min Tsay, Innchyn Her, Jao-Hwa Kuang |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0902104-124008 |
Rights | not_available, Copyright information available at source archive |
Page generated in 0.0022 seconds