Return to search

Solutions alternatives pour améliorer le test de production des capteurs optiques en technologie CMOS / Alternative solution to improve the production test of optical sensors in CMOS technology

Le test de production des imageurs CMOS est une étape clé du flot de fabrication afin de garantir des produits répondant aux critères de qualité et exempts de défauts de fabrication. Ces tests sont classifiés en test électrique et test optique. Le test électrique est basé sur du test structurel qui vérifie la partie numérique et certain blocks analogiques. La plus grande partie des circuits analogiques et la matrice des capteurs sont testés par le test optique. Ce test est basé sur des captures d'images et sur une recherche des défauts au moyen d'algorithmes de calcul spécifiques appliqué sur les images. Proche du fonctionnement applicatif, ils sont qualifies de test fonctionnels. La couverture des défauts obtenue par les tests de type fonctionnel est généralement inférieure à celle obtenue par un test structurel. L'objectif de cette thèse est d'étudier et développer des solutions de test alternatives aux tests fonctionnels afin d'obtenir des meilleurs taux de couverture de défauts, améliorant ainsi la fiabilité, tout en réduisant le temps de test et son coût. Parmi les défauts optiques qui ont causé des retours client par le passés, le défaut qui présent Horizontal Fixed Pattern Noise (HFPN) donnent lieu à un taux de couverture insuffisant. Ces recherches ont été orientées vers l'amélioration du taux de couverture de défauts dite de HFPN dans le test de production des imageurs CMOS.Le HFPN est défini comme une sorte d'image défaillante qui présente sous la forme des bandes résiduelles horizontales. Il est principalement causé par les défauts dans les lignes d'interconnexion qui alimentent et pilotent les pixels. La détection d'un défaut HFPN dans les tests optiques actuels est par comparer les valeurs moyennes de chaque ligne de pixels avec les lignes adjacentes. Si la différence d'une ligne par rapport aux lignes adjacentes est supérieur à la limites spécifié, la ligne est constaté comme défectueuse. Cette limite est donc difficile d'être ajusté face à un compromis entre le taux de couverture de ce défaut et le rendement.Dans cette thèse, nous avons proposé d'abord une amélioration de l'algorithme de détection pour améliorer le test optique actuelle. L'amélioration de test optique est validée par des résultats de test en production en appliquant le nouvel algorithme. Par la suite, une technique d'auto test (BIST) pour la détection des défauts dans les lignes d'interconnexion de matrice des pixels est étudiée et évalué. Enfin, une puce imageur avec le technique d'auto test embarqué est conçu et fabriqué pour la validation expérimentale. / Current production testing of CMOS imager sensors is mainly based on capturing images and detecting failures by image processing with special algorithms. The fault coverage of this costly optical test is not sufficient given the quality requirements. Studies on devices produced at large volume have shown that Horizontal Fixed Pattern Noise (HFPN) is one of the common image failures encountered on products that present fault coverage problems, and this is the main cause of customer returns for many products. A detailed analysis of failed devices has demonstrated that HFPN failures arise from changes of electronic circuit topology in pixel addressing decoders or the metal lines required for pixel powering and control. These changes are usually due to the presence of spot defects, causing some pixels in a row to operate incorrectly, leading to an HFPN failure. Moreover, defects resulting in partially degraded metal lines may not induce image failure in limited industrial test conditions, passing the optical tests. Later, these defects may produce an image failure in the field, either because the capture conditions would be more stringent, or because the defects would evolve into catastrophic faults due to electromigration. In this paper, we have first enhanced the HFPN detection algorithm in order to improve the fault coverage of the optical test. Next, a built-in self-test structure is presented for the on-chip detection of catastrophic and non-catastrophic defects in the pixel power and control lines.

Identiferoai:union.ndltd.org:theses.fr/2015GREAT117
Date13 October 2015
CreatorsFei, Richun
ContributorsGrenoble Alpes, Mir, Salvador
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds