This project was designed to assess the ability of natural sediment microbial communities and single species microbial populations to preferentially utilize inorganic forms of nitrogen (ammonium, NH4-N, and nitrate, NO3-N, specifically). The first chapter addressed two primary questions: 1) Do sediment microbial communities preferentially assimilate NH4-N or NO3-N?; and, 2) Does preferential uptake of nitrogen change with increased NH4-N or NO3-N availability? The second chapter furthered these analyses by assessing shifts in microbial nitrogen assimilation in response to sustained nitrogen enrichments. Primary questions addressed were: 1) Are microbial communities able to adapt to nitrogen enrichment and preferentially utilize a more available source?; and, 2) Are initial microbial responses to nitrogen enrichment different from sustained responses? Questions were addressed with in vitro laboratory experiments quantifying microbial activity. Overall, microbial community activity changed in response to the form of nitrogen available, enrichment type, and duration of exposure. Data demonstrate sediment microbial communities in the Midwestern US may prefer NO3-N over other forms of nitrogen. However, microbial communities became saturated with NO3-N with increases in concentrations >0.75 mg NO3-N/L. Microbial communities were able to adapt to higher nitrogen concentration and increase rates of assimilation for both NH4-N and NO3-N. Thus, microbial communities are robust in response to nitrogen increases in and ecosystem, even in high nitrogen environments like the Midwestern US. / Preferential uptake of available nitrogen forms -- Adaptive uptake in microbial communities. / Department of Biology
Identifer | oai:union.ndltd.org:BSU/oai:cardinalscholar.bsu.edu:123456789/193653 |
Date | January 2010 |
Creators | Bunch, Nathan D. |
Contributors | Bernot, Melody J. |
Source Sets | Ball State University |
Detected Language | English |
Format | 61 p. : digital, PDF file, ill. (some col.). |
Source | CardinalScholar 1.0 |
Page generated in 0.0136 seconds