Return to search

Measurement and Modeling of Fire Behavior in Leaves and Sparse Shrubs

Wildland fuels and fire behavior have been the focus of numerous studies and models which provide operational support to firefighters. However, fuel and fire complexity in live shrubs has resulted in unexpected and sometimes aggressive fire behavior. The combustion of live fuels was studied and modeled, and the results were assimilated into a shrub-scale fire behavior model which assumes fire spread by flame-fuel overlap. Fire spread models have usually assumed that radiation heat transfer is responsible for driving fire spread, but that assumption is a topic of continuing debate, and appears to contradict some experimental observations. A convection-based shrub-scale fire spread model has been developed, building on a heritage of experiments and modeling previously performed at Brigham Young University. This project has (1) characterized fundamental aspects of fire behavior, (2) integrated the resulting submodels of fire behavior into an existing shrub model framework, and (3) produced shrub-scale fire spread experiments and (4) made model comparisons. This research models fire spread as a convection-driven phenomenon and demonstrates strategies for overcoming some of the challenges associated with this novel approach.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-6544
Date01 July 2014
CreatorsPrince, Dallan R
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.0021 seconds